Detector tilt considerations in high-energy Bragg coherent diffraction imaging: a simulation study
Résumé
This paper addresses three-dimensional signal distortion and image reconstruction issues in x-ray Bragg coherent diffraction imaging (BCDI) in the event of a general non-orthogonal orientation of the area detector with respect to the diffracted beam. Growing interest in novel BCDI adaptations at fourth-generation synchrotron light sources has necessitated improvisations in the experimental configuration and the subsequent data analysis. One such possibly unavoidable improvisation that is envisioned in this paper is a photon-counting area detector whose face is tilted away from the perpendicular to the Bragg-diffracted beam during acquisition of the coherent diffraction signal. We describe a likely circumstance in which one would require such a detector configuration, along with experimental precedent at third generation synchrotrons. Using physically accurate diffraction simulations from synthetic scatterers in the presence of such tilted detectors, we analyze the general nature of the observed signal distortion qualitatively and quantitatively, and provide a prescription to correct for it during image reconstruction. Our simulations and reconstructions are based on an adaptation of the known theory of BCDI sampling geometry as well as recently developed projection-based methods of wavefield propagation. Such configurational modifications and their numerical remedies are potentially valuable in realizing unconventional coherent diffraction measurement geometries and eventually paving the way for the integration of BCDI into new materials characterization experiments at next-generation light sources.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|