Spatio-temporal mixture process estimation to detect population dynamical changes - Archive ouverte HAL
Article Dans Une Revue Artificial Intelligence in Medicine Année : 2022

Spatio-temporal mixture process estimation to detect population dynamical changes

Résumé

Population monitoring is a challenge in many areas such as public health or ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatio-temporal data evolution. Assuming that mixture models can correctly model populations, we propose new versions of the Expectation-Maximization algorithm to better estimate both the number of clusters together with their parameters. We then combine these algorithms with a temporal statistical model, allowing to detect dynamical changes in population distributions, and name it a spatio-temporal mixture process (STMP). We test STMP on synthetic data, and consider several different behaviors of the distributions, to adjust this process. Finally, we validate STMP on a real data set of positive diagnosed patients to corona virus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
Fichier principal
Vignette du fichier
STMPHAL_3.pdf (3.66 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02933217 , version 1 (08-09-2020)
hal-02933217 , version 2 (25-02-2021)
hal-02933217 , version 3 (25-10-2022)

Identifiants

Citer

Solange Pruilh, Anne-Sophie Jannot, Stéphanie Allassonnière. Spatio-temporal mixture process estimation to detect population dynamical changes. Artificial Intelligence in Medicine, 2022, 126, pp.102258. ⟨10.1016/j.artmed.2022.102258⟩. ⟨hal-02933217v3⟩
422 Consultations
181 Téléchargements

Altmetric

Partager

More