Gray tensor products and lax functors of $(\infty,2)$-categories
Résumé
We give a definition of the Gray tensor product in the setting of scaled simplicial sets which is associative and forms a left Quillen bifunctor with respect to the bicategorical model category of Lurie. We then introduce a notion of oplax functor in this setting, and use it in order to characterize the Gray tensor product by means of a universal property. A similar characterization was used by Gaitsgory and Rozenblyum in their definition of the Gray product, thus giving a promising lead for comparing the two settings.