Theodorus’ lesson in Plato’s Theaetetus (147d1-d6) Revisited-A New Perspective
La leçon de Théodore dans le Théétète de Platon (147d1-d6) revisitée-Une nouvelle perspective
Résumé
This article is the first part of a study of the so-called 'mathematical part' of Plato's Theaetetus (147d-148b). The subject of this 'mathematical part' is the irrationality, one of the most important topics in early Greek mathematics. As of huge interest for mathematicians, historians of mathematics as well as of philosophy, there had been an avalanche of studies about it. In our work, we revisit this question, for we think something is missing: a global analysis of Plato's text, from these three points of view simultaneously: history, mathematics and philosophy. It is what we have undertook through a new translation, a new interpretation of the mathematical lesson about irrational magnitudes and a novel interpretation of the whole passage from these three points of view. Our guideline is considering Plato's writings seriously, not as some playful work. This simple rule is indeed surprisingly constraining, but it allows us to get a rare direct glance inside pre-Euclidean mathematics, in contradiction with the 'Main Standard Interpretation' prevailing in history of mathematics as well as in history of philosophy. This study had been divided in two parts for editorial reasons. In the present article, we propose an analysis of the first part of this 'mathematical part', Theodorus' lesson. In the second article (Brisson-Ofman (to appear)), we present the sequel of the lesson and a philosophical interpretation of the 'mathematical part' within the framework of the entire dialogue. Both articles form a whole. They are both aimed to an audience without any particular mathematical background, and require only elementary mathematical knowledge, essentially of high school-level. Some more delicate points are nevertheless developed in the Appendices.
Cet article est la première partie d'une étude de ce qu'on appelle la 'partie mathématique' du Théétète de Platon (147d-148b). Le sujet de cette 'partie mathématique' est l'irrationalité qui, en tant qu'il concerne aussi bien les mathématiciens, les historiens des mathématiques que ceux de la philosophie, a été l'objet d'une avalanche d'études et de commentaires. Nous reprenons néanmoins cette question, car nous pensons qu'une approche globale fait défaut : une analyse du texte, simultanément de ces trois points de vue : histoire, mathématiques et philosophie. C'est ce que nous avons entrepris ici, en proposant une 2 nouvelle traduction, une nouvelle interprétation de la leçon mathématique de Théodore sur les grandeurs irrationnelles et une nouvelle interprétation du passage tout entier. Notre fil conducteur constant a été de prendre le texte de Platon au sérieux, non pas comme une sorte de récit fantaisiste. Cette simple règle est certes étonnamment contraignante, mais elle permet d'obtenir un aperçu direct sur les mathématiques pré-euclidiennes. Il est en contradiction ouverte avec 'l'interprétation standard principale' prévalant en histoire des mathématiques aussi bien qu'en histoire de la philosophie. Pour des raisons éditoriales, nous avons divisé ce travail en deux articles. Dans celui-ci, nous étudions la première partie du passage, la leçon de Théodore. Dans le second (Brisson-Ofman (to appear)), nous présentons la suite et la fin du passage, ainsi qu'une interprétation philosophique globale de la 'partie mathématique, dans le cadre du dialogue dans sa totalité. Ces deux articles forment un tout. Ils se destinent tous deux à un public sans formation mathématique particulière, leur compréhension ne supposant que des connaissances mathématiques très élémentaires, essentiellement celles des premières années de collège. Pour le lecteur curieux, certains points plus délicats sont néanmoins développés dans les Annexes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...