Learning in mean field games: The fictitious play - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2017

Learning in mean field games: The fictitious play

Résumé

Mean Field Game systems describe equilibrium configurations in differential games with infinitely many infinitesimal interacting agents. We introduce a learning procedure (similar to the Fictitious Play) for these games and show its convergence when the Mean Field Game is potential.

Mots clés

Fichier principal
Vignette du fichier
cocv160004-s.pdf (342.38 Ko) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-02922726 , version 1 (26-08-2020)

Identifiants

Citer

Pierre Cardaliaguet, Saeed Hadikhanloo. Learning in mean field games: The fictitious play. ESAIM: Control, Optimisation and Calculus of Variations, 2017, 23 (2), pp.569-591. ⟨10.1051/cocv/2016004⟩. ⟨hal-02922726⟩
45 Consultations
44 Téléchargements

Altmetric

Partager

More