A decomposition theorem for $\mathbb Q$-Fano Kähler-Einstein varieties - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2024

A decomposition theorem for $\mathbb Q$-Fano Kähler-Einstein varieties

Résumé

Let $X$ be a $\mathbb Q$-Fano variety admitting a K\"ahler-Einstein metric. We prove that up to a finite quasi-\'etale cover, $X$ splits isometrically as a product of K\"ahler-Einstein $\mathbb Q$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of $T_X$ by $\mathscr O_X$ is semistable with respect to the anticanonical polarization.
Fichier principal
Vignette du fichier
Stability_QFano.pdf (287.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02922651 , version 1 (26-08-2020)

Identifiants

Citer

Stéphane Druel, Henri Guenancia, Mihai Păun. A decomposition theorem for $\mathbb Q$-Fano Kähler-Einstein varieties. Comptes Rendus. Mathématique, 2024, 362 (S1), pp.93-118. ⟨10.5802/crmath.612⟩. ⟨hal-02922651⟩
53 Consultations
65 Téléchargements

Altmetric

Partager

More