Parametric recurrence quantification analysis of autoregressive processes for pattern recognition in multichannel electroencephalographic data - Archive ouverte HAL Access content directly
Journal Articles Pattern Recognition Year : 2021

Parametric recurrence quantification analysis of autoregressive processes for pattern recognition in multichannel electroencephalographic data

Abstract

Recurrence quantification analysis (RQA) is an acknowledged method for the characterization of experimental time series. We propose a parametric version of RQA, pRQA, allowing a fast processing of spatial arrays of time series, once each is modeled by an autoregressive stochastic process. This method relies on the analytical derivation of asymptotic expressions for five current RQA measures as a function of the model parameters. By avoiding the construction of the recurrence plot of the time series, pRQA is computationally efficient. As a proof of principle, we apply pRQA to pattern recognition in multichannel electroencephalographic (EEG) data from a patient with a brain tumor.
Fichier principal
Vignette du fichier
Ramdani-Pattern-Recognition-2020-postprint.pdf (2.4 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02921847 , version 1 (21-09-2020)

Identifiers

Cite

Sofiane Ramdani, Anthony Boyer, Stéphane Caron, François Bonnetblanc, Frederic Bouchara, et al.. Parametric recurrence quantification analysis of autoregressive processes for pattern recognition in multichannel electroencephalographic data. Pattern Recognition, 2021, 109, pp.#107572. ⟨10.1016/j.patcog.2020.107572⟩. ⟨hal-02921847⟩
286 View
142 Download

Altmetric

Share

Gmail Facebook X LinkedIn More