Query-based learning of acyclic conditional preference networks from contradictory preferences - Archive ouverte HAL
Article Dans Une Revue EURO journal on decision processes Année : 2018

Query-based learning of acyclic conditional preference networks from contradictory preferences

Résumé

Conditional preference networks (CP-nets) provide a powerful, compact, and intuitive graphical tool to represent the preferences of a user. However learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose in this paper a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the incoherences in the user's preferences or in noisy data by searching in a principled way the variables that condition the other ones. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real datasets.
Fichier principal
Vignette du fichier
cp-net_da2pl.pdf (337.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02074081 , version 1 (20-03-2019)

Identifiants

Citer

Fabien Labernia, Florian Yger, Brice Mayag, Jamal Atif. Query-based learning of acyclic conditional preference networks from contradictory preferences. EURO journal on decision processes, 2018, 6 (1-2), pp.39-59. ⟨10.1007/s40070-017-0070-3⟩. ⟨hal-02074081⟩
104 Consultations
76 Téléchargements

Altmetric

Partager

More