Reducing dimension in Bayesian Optimization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Reducing dimension in Bayesian Optimization

Résumé

This talk was given at the LIMOS on July the 9th 2020 and was mainly intended for an audience of non specialists of Gaussian processes (GPs). The first slides (up to slide 12) about GPs and Bayesian Optimization should probably be skipped by readers already aware about them. However, the two research contributions on variable selection for optimization 1) by kernel methods and, 2) by penalized likelihood in the PCA space, may be of interest to some experts.
talk_limos_BO_dimension (1).pdf (4.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02913882 , version 1 (08-10-2020)
hal-02913882 , version 2 (26-11-2020)

Identifiants

  • HAL Id : hal-02913882 , version 1

Citer

Rodolphe Le Riche, Adrien Spagnol, David Gaudrie, Sébastien da Veiga, Victor Picheny. Reducing dimension in Bayesian Optimization. LIMOS internal seminar, Jul 2020, Clerrmont-Ferrand, France. ⟨hal-02913882v1⟩
550 Consultations
228 Téléchargements

Partager

More