Embedding Formal Contexts Using Unordered Composition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Embedding Formal Contexts Using Unordered Composition

Résumé

Despite their simplicity, formal contexts possess a complex latent structure that can be exploited by formal context analysis (FCA). In this paper, we address the problem of representing formal contexts using neural embeddings in order to facilitate knowledge discovery tasks. We propose Bag of Attributes (BoA), a dataset agnostic approach to capture the latent structure of formal contexts into embeddings. Our approach exploits the relation between objects and attributes to generate representations in the same embedding space. Our preliminary experiments on attribute clustering on the SPECT heart dataset, and on co-authorship prediction on the ICFCA dataset, show the feasibility of BoA with promising results.
Fichier principal
Vignette du fichier
BoA_article_FCA4AI (3).pdf (489.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02912874 , version 1 (06-08-2020)

Identifiants

  • HAL Id : hal-02912874 , version 1

Citer

Esteban Marquer, Ajinkya Kulkarni, Miguel Couceiro. Embedding Formal Contexts Using Unordered Composition. FCA4AI - 8th International Workshop "What can FCA do for Artificial Intelligence?" (colocated wit ECAI2020), Aug 2020, Santiago de Compostela, Spain. ⟨hal-02912874⟩
246 Consultations
240 Téléchargements

Partager

More