Scaling properties of neural networks for the prediction of time series - Archive ouverte HAL
Communication Dans Un Congrès Année : 1996

Scaling properties of neural networks for the prediction of time series

Résumé

Scaling properties of neural networks, i.e. relations between the number of hidden units and the training or generalization error, recently have been investigated theoretically with encouraging results. In this paper we investigate experimentally, whether the theoretic results may be expected in practical applications. We investigate different neural network structures with varying number of hidden units for solving two time series prediction tasks. The results show a considerable difference of the scaling behavior of multilayer perceptrons and radial basis function networks.
Fichier principal
Vignette du fichier
inns96.pdf (81.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02911724 , version 1 (04-08-2020)

Identifiants

Citer

Axel Roebel. Scaling properties of neural networks for the prediction of time series. 1996 IEEE Signal Processing Society Workshop, Sep 1996, Kyoto, Japan. pp.190-199, ⟨10.1109/NNSP.1996.548349⟩. ⟨hal-02911724⟩
18 Consultations
85 Téléchargements

Altmetric

Partager

More