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Abstract: Scaling properties of neural networks, that are the relations between
the number of hidden units and the training or generalization error, recently
have been investigated theoretically with encouraging results. In our paper
we investigate experimentally, whether the theoretic results may be expected
in practical applications. We investigate different neural network structures
with varying number of hidden units for solving two time series prediction
tasks. The results show a considerable difference of the scaling behavior of
multi layer perceptrons and radial basis function networks.

Introduction

Time series prediction is one of the applications for which recent methodsof non-
linear signal processing have led to new and interesting possibilities. Especially the
use of neural networks for prediction [20, 19] and even modeling of nonlinear dy-
namical systems [11, 13] has been successfully investigated. The basic idea of this
methods has been developed by a number of groups independently around 1980, for
example [2], and has been given a strong theoretical background later by [17,14].

One open question concerning the behavior of neural networks is the relation be-
tween the number of hidden units and the network error, in the following denoted
as scaling properties. There exists some recent encouraging theoretical results con-
cerning this scaling properties of neural networks [1, 6], however, it is unknown
whether these results may be obtained by existing training algorithms. Therefore,
we have investigated the scaling of the neural network prediction error solving two
time series prediction tasks and report our results in the following sections.

The following article is organized as follows. In the first two sections we give a
short introduction into the foundation of time series prediction by phase space re-
construction with delayed coordinate vectors and summarize on the theoretical re-



sults concerned with the scaling properties of neural networks. In sectionthree and
four we describe the network structures and training algorithms we have used in the
experiments. In section five we report the results for predicting a computer gener-
ated time series from the Mackey Glass differential equation and a real world sax-
ophone tone, respectively and we study the relation between the number of hidden
units of the networks and the prediction error on a hold out test set.

1 Reconstructing Attractors

Assume ann-dimensional dynamical systemf(�) evolving on an attractorA. A has
fractal dimensiond, which often is considerably smaller thenn. The system state~z is observed through a sequence of measurementsh(~z), resulting in a time series
of measurementsyt = h(~z(t)). Under weak assumptions concerningh(�) andf(�)
the fractal embedding theorem[14] ensures that, forD > 2d, the set of alldelayed
coordinate vectorsYD;T = ft > t0 : (yt; yt�T ; : : : ; yt�(D�1)T )g; (1)

with an arbitrary delay timeT , forms an embedding ofA in theD-dimensional
reconstructionspace. Because an embedding preserves characteristic features ofA,
especially it is one to one, it may be employed for prediction or modeling of the
system dynamics. The delayed coordinate vectors are easily obtained from thetime
series by a tapped delay line. Provided the dimension of this tapped delay line is
chosen large enough, the embedding theorem ensures that there exists a nonlinear
autoregressive (NAR) model that predicts the future behavior of thetime series.

2 Scaling Properties of Basic Neural Network Structures

The approximation capabilities of the different neural network structures have been
investigated by various authors [5, 10, 3]. These investigations agreein the point
that the multi layer perceptron as well as the radial basis function network with
a sufficient number of hidden units are capable to approximate smooth functions
to any degree of accuracy. Therefore, neural networks are well suited to buildthe
NAR time series model introduced in the previous section.
Up to now, the number of hidden units that has to be used for a desired approxi-
mation error is still unknown. Some recent results address the relationbetween the
training error of a neural network and the number of hidden units [1, 6]. These re-
sults are encouraging in that for restricted classes of target functions it is shown that
there exists sequences of networks with increasing number of hidden units such the
minimal training error depends on the number of hidden units followingmean squared error � Cnumber of hidden units ; (2)

with a problem dependent constantC and does not depend on the dimension of
the domain of the target function. In a practical situation the existing training al-



gorithms will generally fail to achieve the optimal solution of the problem and,
therefore, the question arises, to what extend the theoretical scaling results apply
for practical applications. In the following sections we report our results concerned
with an experimental investigation of the scaling behavior of neural network for
time series prediction. Here we restrict ourselves to the investigationof the training
process in a somewhat ideal situation with a sufficient number of training samples
(no overfitting) and small noise level. Any severe limitation of thetraining set size
or a considerable level of noise in the data would certainly affect the theoretical
bounds for the scaling behavior of the neural networks and, therefore, is beyond the
scope of this investigation.

3 Network Topologies

Many different network structures have been proposed in the literature for predict-
ing time series. For the following investigation, however, we restrict ourselves to
the basic topologies, the multi layer perceptron and radial basis function networks,
which are frequently extended to build more sophisticated approaches, forexample
the FIR-network [19, pp. 195] or Fuzzy-Neuro-Systems [7].

Multi layer perceptron: The application of multi layer perceptrons (MLP) to
time series prediction has first been investigated by Lapedes and Farber [8] and still
is frequently used today [20]. Lapedes and Farber used a network with sigmoid
activation functionas(x) in two hidden layers and a linear output unit. In our ex-
periments we found that the scaling behavior of the MLP does not depend on the
number of hidden layers. Therefore, we restrict ourselves to use a MLP with a sin-
gle hidden layer in the following experiments. The network functionof the MLP
is n(~x) =Xi Wias( ~wi � ~x+ bi); as(x) = 11 + e�x (3)

whereWi is the hidden to output weight for hidden uniti, ~wi and bi are input
weights and bias of hidden unit i and~x is the input vector presented to the network.

Radial basis function networks: Radial basis function (RBF) networks have
been proposed for time series prediction by Moody and Darken [9]. In thiscase
the activation function is Gaussian shapedar(~x; ~w; �) = e�(~x�~w� )2 ; (4)

with ~w and� describing the center and width of the Gaussian. The overall network
function may be structured equivalently to (3), by replacingas with ar. Alterna-
tively an additional normalization is incorporated leading to the networkfunctionn(~x) =Xi Wi ar(~x; ~wi; �i)Pi ar(~x; ~wi; �i) : (5)



In the following we will reference the former type by RBF-G and the latter by
RBF-N. For both cases Moody and Darken proposed an hybrid training algorithm,
composed of a vector quantization (VQ) algorithm for determining the centers ~wi
and the widths�i and a linear optimization of the output layer. This algorithm is
very fast and, provided the�i are selected properly, results in a network with local-
ized response of the hidden units. However, due to the independent optimization of
the different layers this algorithm generally does not obtain optimal performance.
An improvement may be obtained by employing a global nonlinear optimization to
adapt all parameters after the vector quantization scheme [18]. Note, however, that
the global optimization may destroy the local response of the hidden units, by con-
siderably increasing the respective�i [9].
In our comparison we used both, the RBF-G and the RBF-N, networks with VQ
and linear or VQ and nonlinear optimization. The type of optimization employed
in the second step of the hybrid training scheme is indicated by an lower letter fol-
lowing the network type as in RBF-Nl for normalized Gaussian units with VQ and
linear optimization of the output layer or RBF-Gn for Gaussian units with VQ and
nonlinear optimization of all parameters.

It is widely accepted that due to the local response ofar the RBF-networks require
more hidden units to achieve the same performance as an MLP. To improve the
RBF-Nl networks for a small number of hidden units an extended RBF network has
been proposed [16]. In this approach the weightsWi are replaced by local linear
models yielding a network functionn(~x) =Xi ( ~Wi~x+Bi) ar(~x; ~wi; �i)Pi ar(~x; ~wi; �i) ; (6)

which is equivalent to a recently established Neuro-Fuzzy Modell (ANFIS) [7]. For
the following experiments we employed this structure with initialization by VQ and
global nonlinear optimization of all parameters (RBF-Ln) to investigatewhether
this structure is able to achieve an improvement compared to the more traditional
RBF networks.

4 Training Algorithms

Most of the chosen neural network structures need to be initialized by a VQ scheme.
For our experiments we started that scheme by randomly choosingn input vectors
from the training data to initialize then hidden unit weights~wi. Then we apply all
thep training data input vectors and try to minimize the vector quantization errorEvq( ~w1; : : : ; ~wn) = nXi pXj �ij j ~xj � ~wij2 (7)

proposed in [9]. In this equation�ij is the cluster membership function being1 if
pattern~xj is nearest to~wi and0 otherwise.Evq is locally minimized by an VQ iter-
ative algorithm that randomly presents the training patterns and adjusts the nearest



hidden unit position by~wi(t+ 1) = ~wi(t) + �(t)( ~xj � ~wi(t)): (8)

The learning rate�(t) is initialized to0:5 and decreased for each training pass until
the errorEvq converged. According to [18] the width factors�i of the RBF units
are initialized to zero and are also adapted during the vector quantization scheme
following �i(t+ 1) = (1� �(t)�i(t) + 2�(t)j ~xj � ~wi(t)j: (9)

For the nonlinear optimization part of the training we have chosen to apply a state
of the art training algorithm calledRPROP, which has been demonstrated to out-
perform many known algorithms in various test settings [15, 12]. This algorithm
is easy to implement and does not need any critical parameter settings to be se-
lected. Moreover, it incorporates local learning rates, a feature which is expected
to be useful especially for optimizing the various RBF networks. In our setting this
algorithm has been applied to the MLP, RBF-Nn, RBF-Gn and RBF-Ln network
nonlinear optimization as well as for the adaptation of the output weightsWi of the
RBF-Nl networks.

5 Experimental Results

The first time series we used for our experiments consists of computer generated
data from the well known Mackey Glass equation_x(t) = a � x(t � Td)1 + x(t� Td)10 � b � x(t) ; (10)

which exhibits chaotic behavior for the parametersa = 0:2, b = 0:1 andTd = 30
[4]. For integration of the system we apply a second-order Runge-Kutta method
with an integration time step ofdt = 0:05. The resulting time series has been sub-
sampled to obtain a sample period of 1. After skipping 1000 samples to allow the
transients to decay we recorded 10000 samples for the training data set and the fol-
lowing 5000 samples as hold out test set. The Mackey Glass attractor is known to
have fractal dimensiond � 3.1 According to the embedding theorem we choose the
neural network input dimension to be2d+ 1 = 7.
As a second example we have chosen a real world time series, a saxophone tone
consisting of 16000 samples sampled at 32kHz. The neural modeling of this sound
has been described in [13], where we have shown that the sound may be modeled by
a neural network with 9 dimensional inputs from the time series and an additional
input which allows to consider the nonstationarity of the signal. Due to this nonsta-
tionarity the training set and test set both have to span the entire time series and are
selected to contain the odd and even samples respectively. Both signals have been

1Note that the Mackey Glass equation describes a time delay system and, therefore, has infinite di-
mensional phase space.
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Fig. 1: NRMSE of various neural network structures for predicting acomputer
generated Mackey Glass time series and a saxophone sound signal.



normalized between[�1 : 1] and in both cases the delay timeT of the tapped delay
line has been chosen to be5.

Obviously, due to the lack of an optimal training algorithm the following experi-
ments does not hold for a strong validation of the theoretical results mentioned in
section2. However, the experiments are intended to show, how close the various
network structures will achieve the theoretical limits in a practical setting. One of
the main practical limitations is given by finite computational power. Therefore, it
is natural to supply a fixed iteration count for the nonlinear optimization (RPROP)
of the different networks. In the following experiments we have performed 5000
batch-cycles for the nonlinear optimization of the parameters. At the end of train-
ing the decrease of the training error for one batch-cycle normalized by the training
error has been analyzed to be of the same order for all networks. Therefore, we
expect that a moderate increase of training cycles will not qualitatively change the
results. In case of the linear RBF-Xl networks the linear optimization has been ver-
ified to reach the global minimum.
We apply the 6 different network structures with increasing number of hidden units
to both of the selected time series prediction tasks. For each task and each network
we used 5 different initializations for optimization. After optimization we calcu-
late the average normalized prediction error (NRMSE)2 and its variance in using
the hold out test set. As mentioned earlier, by using a sufficient amount of training
data we prevent any overfitting, which would have been indicated by a difference
between training and test error.

The prediction error obtained by the various networks on the hold outtest sets of
both time series are shown in figure 1. In both cases we observe, that the MLP
network does not show the expected scaling behavior at all. While in case ofthe
saxophone time series the average prediction error of the MLP and its variance re-
mains nearly constant. For the Mackey Glass time series the results are evenmore
in contrast to the expectations, with an increasing average training errorbeyond a
network complexity of 20 hidden units. In this case the increasing prediction error
is accompanied by an considerable increase in the variance of the results. Thisleads
to the explanation that the complexity of the optimization problem and the number
of local minima prevents any reasonable improvement of the solution. Note, that
the behavior is not confined to the special training algorithm used, but, has been ob-
served with more sophisticated algorithms, too.
As a second result we find that the scaling of all the RBF-related networks is com-
parable and, moreover, it is comparable to the expected relation given in (2). The
error for both types of RBF-Xl networks is similar and we present onlythe RBF-
Nl networks, which obtained in both applications a slightly lower prediction error.
In the logarithmic scaling of figure 1 the pairwise difference of the prediction error
for the various RBF networks is roughly independent of the network complexity,
which is related to the expectation that the constantC in (2) will differ for the dif-
ferent type of networks. The comparison of the RBF-Xn type networksshows, that

2For normalization we use the variance of the time series.



all this networks obtain similar results. For both tasks, however, the lowest predic-
tion error has been obtained with the RBF-Nn networks. Compared to the RBF-Nl
network the nonlinear optimization yields an improvement in the NRMSEof about
an order of magnitude.
As a last result we compare the prediction error achieved by the RBF-Xx networks
and the MLP. As expected the RBF-Xl network, due to the heuristic optimization of
the parameters of the first layer, given by (8) and (9), and due to the strictly local
activation function, needs lots of hidden units more than the MLP to obtain compa-
rable prediction quality. However, the nonlinear global optimizationof the RBF-Xn
networks has outperformed the MLP in almost all cases3. Moreover, the RBF-Nn
networks converged considerably faster and, therefore, may be expected to need
less computation expense to be optimized.

At first glance it might be surprising that the optimization of RBF-Xn networks does
not suffer from the increase in complexity and local minima as the MLP. As an ex-
planation one might argue that the VQ initialization of the RBF networks achieves a
fairly good initialization of the network. The remaining optimization does not start
from scratch and, therefore, does not end in a local minima as often as in the case
of the MLP. A further advantage of the optimization of the RBF-Xx networks is the
local behavior of the hidden units. If we accept the number of interacting units for a
specific location in input space as an indicator for the optimization complexity, we
may argue, that due to the local response of the RBF hidden units the number of
overlapping hidden units remains nearly constant even for large networks. In con-
trast to this in case of the MLP nearly all hidden units contribute to anylocation of
the target function and, therefore, the number of interactions and the complexity of
the optimization raises with the power of two of the number of hidden units.

6 Conclusion

The results presented in this paper indicate that the time series prediction error of
RBF neural networks obtained by a practical algorithm does show the relation to
the number of hidden units that is expected from recent theoretical results.By pre-
dicting a computer generated and a real world time series we have demonstrated
that the global nonlinear optimization of RBF networks improves the prediction er-
ror by an order of magnitude compared to the RBF networks that are optimized only
in the output layer. Compared to MLP networks with the same number of hidden
units, we obtained the result that RBF networks with nonlinear optimization give
rise to lower generalization error, even in the case of small networks. Forthe MLP
networks we do not find the expected scaling behavior and conjecture that the ran-
dom initialization and the global response of the hidden units are thereasons for
the optimization not being able to adequately solve the problem for an increasing
number of hidden units.

3A similar result has been described for the logistic function by Moody and Darken [9].
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