HRI-RNN: A User-Robot Dynamics-Oriented RNN for Engagement Decrease Detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

HRI-RNN: A User-Robot Dynamics-Oriented RNN for Engagement Decrease Detection

Résumé

Natural and fluid human-robot interaction (HRI) systems rely on the robot's ability to accurately assess the user's engagement in the interaction. Current HRI systems for engagement analysis , and more broadly emotion recognition, only consider user data while discarding robot data which, in many cases, affects the user state. We present a novel recurrent neural architecture for online detection of user engagement decrease in a spontaneous HRI setting that exploits the robot data. Our architecture models the user as a distinct party in the conversation and uses the robot data as contextual information to help assess engagement. We evaluate our approach on a real-world highly imbal-anced data set, where we observe up to 2.13% increase in F1 score compared to a standard gated recurrent unit (GRU).
Fichier principal
Vignette du fichier
Interspeech2020-camera-ready.pdf (160.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02910344 , version 1 (01-08-2020)

Identifiants

  • HAL Id : hal-02910344 , version 1

Citer

Asma Atamna, Chloé Clavel. HRI-RNN: A User-Robot Dynamics-Oriented RNN for Engagement Decrease Detection. INTERSPEECH 2020, Oct 2020, Shanghai, China. ⟨hal-02910344⟩
103 Consultations
237 Téléchargements

Partager

More