HRI-RNN: A User-Robot Dynamics-Oriented RNN for Engagement Decrease Detection
Abstract
Natural and fluid human-robot interaction (HRI) systems rely on the robot's ability to accurately assess the user's engagement in the interaction. Current HRI systems for engagement analysis , and more broadly emotion recognition, only consider user data while discarding robot data which, in many cases, affects the user state. We present a novel recurrent neural architecture for online detection of user engagement decrease in a spontaneous HRI setting that exploits the robot data. Our architecture models the user as a distinct party in the conversation and uses the robot data as contextual information to help assess engagement. We evaluate our approach on a real-world highly imbal-anced data set, where we observe up to 2.13% increase in F1 score compared to a standard gated recurrent unit (GRU).
Origin | Files produced by the author(s) |
---|
Loading...