Tuning of an artificial pancreas controller: an in silico methodology based on clinically-relevant criteria
Résumé
This paper presents a methodology to tune an artificial pancreas controller by minimizing the time spent in endangering glycaemic ranges (hypo- and hyperglycaemia). The risk associated to the patient’s glycaemia is evaluated with an objective metric (the blood glucose risk index), which has an established clinical relevance. The tuned controller is validated in the UVA/Padova environment where the resulting artificial pancreas achieves minimal glucose risk index in realistic 24-hour long scenarios with unannounced glucose intake.