Instrumented slider to measure local micro-impact forces between dry rough solids
Résumé
Sliding motion between two rough solids under light normal loading involves myriad micro-impacts between antagonist micro-asperities. Those micro-impacts are at the origin of many emerging macroscopic phenomena, including the friction force, the slider's vibrations and the noise radiated in the surroundings. However, the individual properties of the micro-impacts (e.g. maximum force, position along the interface, duration) are essentially elusive to measurement. Here, we introduce an instrumented slider aimed at measuring the position and the normal component of the micro-impact forces during sliding against a rough track. It is based on an array of piezoelectric sensors, each placed under a single model asperity. Its dynamical characteristics are established experimentally and compared to a finite elements model. We then demonstrate its relevance to tribology by using it against a track bearing simple, well-defined topographical features. The measurements are interpreted thanks to a simple multi-asperity contact model.
Origine | Fichiers produits par l'(les) auteur(s) |
---|