Identifying Common Periodicities in Mobile Service Demands with Spectral Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Identifying Common Periodicities in Mobile Service Demands with Spectral Analysis

Résumé

In this paper, we investigate the existence and prevalence of comparable dynamics in the temporal fluctuations for the traffic demands generated by mobile applications. To this end, we hinge upon a spectral analysis framework, by computing Discrete Fourier Transforms of the typical demands for tens of popular mobile services observed in an operational metropolitan-scale network. We filter, cluster, and analyse hundreds of frequency components, and identify a substantial set of regular patterns that are common across most service demands. We also unveil how several mobile services defy classification, and have instead highly distinguishing temporal dynamics.
Fichier principal
Vignette du fichier
medcomnet20_service-components_postprint.pdf (7.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02904052 , version 1 (21-07-2020)

Identifiants

  • HAL Id : hal-02904052 , version 1

Citer

Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Zbigniew Smoreda. Identifying Common Periodicities in Mobile Service Demands with Spectral Analysis. IEEE MedComNet, Jun 2020, Arona, Italy. ⟨hal-02904052⟩

Collections

ANR
44 Consultations
77 Téléchargements

Partager

More