On the excursion area of perturbed Gaussian fields - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2020

On the excursion area of perturbed Gaussian fields

Résumé

We investigate Lipschitz-Killing curvatures for excursion sets of random fields on ℝ2 under a very specific perturbation, namely a small spatial-invariant random perturbation with zero mean. An expansion formula for mean curvatures is derived when the magnitude of the perturbation vanishes, which recovers the Gaussian Kinematic Formula at the limit by contiguity of the model. We develop an asymptotic study of the perturbed excursion area behaviour that leads to a quantitative non-Gaussian limit theorem, in Wasserstein distance, for fixed small perturbations and growing domain. When letting both the perturbation vanish and the domain grow, a standard Central Limit Theorem follows. Taking advantage of these results, we propose an estimator for the perturbation variance which turns out to be asymptotically normal and unbiased, allowing to make inference through sparse information on the field.
Fichier principal
Vignette du fichier
ps190049.pdf (1.44 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-02904016 , version 1 (21-07-2020)

Licence

Identifiants

Citer

Elena Di Bernardino, Anne Estrade, Maurizia Rossi. On the excursion area of perturbed Gaussian fields. ESAIM: Probability and Statistics, 2020, 24, pp.252-274. ⟨10.1051/ps/2020002⟩. ⟨hal-02904016⟩
72 Consultations
91 Téléchargements

Altmetric

Partager

More