The contact process on random hyperbolic graphs: metastability and critical exponents - Archive ouverte HAL
Journal Articles Annals of Probability Year : 2021

The contact process on random hyperbolic graphs: metastability and critical exponents

Dieter Mitsche
  • Function : Author
  • PersonId : 949371
Bruno Schapira
  • Function : Author
  • PersonId : 950892

Abstract

We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent χ ∈ (1, 2) (so that the degree distribution has finite mean and infinite second moment). We show that the probability of non-extinction as the rate of infection goes to zero decays as a power law with an exponent that only depends on χ and which is the same as in the configuration model, suggesting some universality of this critical exponent. We also consider finite versions of the hyperbolic graph and prove metastability results, as the size of the graph goes to infinity.
Fichier principal
Vignette du fichier
CP.hyperbolic-FINAL.pdf (592.34 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Comment Ce pdf est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing)
Loading...

Dates and versions

hal-02902848 , version 1 (20-07-2020)

Identifiers

Cite

Amitai Linker, Dieter Mitsche, Bruno Schapira, Daniel Valesin. The contact process on random hyperbolic graphs: metastability and critical exponents. Annals of Probability, 2021, 49 (3), pp.1480-1514. ⟨10.1214/20-AOP1489⟩. ⟨hal-02902848⟩
135 View
43 Download

Altmetric

Share

More