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Abstract

We consider the contact process on the model of hyperbolic random graph, in the
regime when the degree distribution obeys a power law with exponent χ ∈ (1, 2) (so that
the degree distribution has finite mean and infinite second moment). We show that the
probability of non-extinction as the rate of infection goes to zero decays as a power law with
an exponent that only depends on χ and which is the same as in the configuration model,
suggesting some universality of this critical exponent. We also consider finite versions
of the hyperbolic graph and prove metastability results, as the size of the graph goes to
infinity.

1 Introduction

It has been empirically observed that complex networks such as social networks, scientific
collaborator networks, citation networks, computer networks and others (see [2]) typically are
scale-free and exhibit a non-vanishing clustering coefficient. Moreover, these networks have a
heterogeneous degree structure, the typical distance between two vertices is very small, and
the maximal distance is also small. A model of complex networks that naturally exhibits these
properties is the random hyperbolic model introduced by [29] (and later formalized by [24]):
one convincing demonstration of this fact was given by Boguñá, Papadopoulos, and Krioukov
in [8] where a compelling maximum likelihood fit of autonomous systems of the internet graph
in hyperbolic space was computed. Another important aspect of this random graph model is
its mathematically elegant specification, making it amenable to mathematical analysis. This
partly explains why the model has been studied also analytically by theoreticians.

On the other hand, the contact process describes a class of interacting particle systems which
serve as a model for the spread of epidemics on a graph. Its use in the context of complex
networks as above goes back at least to Berger, Borgs, Chayes and Saberi [4], and has been
since then the object of an intense activity (see below for a partial overview).

Before giving more related work, we define the concepts mentioned in more detail.
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The hyperbolic graph model of [29]

In the original model of Krioukov, Papadopoulos, Kitsak, Vahdat, and Boguñá [29] an n-vertex
size graph was obtained by first randomly choosing n points in the disk of radius R = R(n)
centered at the origin of the hyperbolic plane. From a probabilistic point of view it is arguably
more natural to consider the Poissonized version of this model. Formally, the Poissonized
model is the following (see also [24] for the same description in the uniform model): for each
n ∈ N, consider a Poisson point process on the hyperbolic disk of radius R := 2 log(n/ν)
for some positive constant ν ∈ R+ (log denotes here and throughout the paper the natural
logarithm) and denote its point set by Vn (the choice of Vn is due to the fact that we will
identify points of the Poisson process with vertices of the graph).

The intensity function at polar coordinates (r, θ) for 0 ≤ r < R and 0 ≤ θ < 2π is equal to

g(r, θ) := νe
R
2 f(r, θ),

where f(r, θ) is the joint density function with θ chosen uniformly at random in the interval
[0, 2π) and independently of r, which is chosen according to the density function

f(r) :=


α sinh(αr)

cosh(αR)− 1
, if 0 ≤ r < R,

0, otherwise.

Note that this choice of f(r) corresponds to the uniform distribution inside a disk of radius
R around the origin in a hyperbolic plane of curvature −α2. Identify then the points of the
Poisson process with vertices (that is, identify a point with polar coordinates (rv, θv) with
vertex v ∈ Vn) and make the following graph Gn = (Vn, En): for u, u′ ∈ Vn, u 6= u′, there is an
edge with endpoints u and u′ provided the distance (in the hyperbolic plane) between u and
u′ is at most R, i.e., the hyperbolic distance between u and u′, denoted by dh := dh(u, u′), is
such that dh ≤ R where dh is obtained by solving

cosh dh := cosh ru cosh ru′ − sinh ru sinh ru′ cos(θu−θu′). (1.1)

For a given n ∈ N, we denote this model by Poiα,ν(n). Note in particular that∫∫
g(r, θ) dθ dr = νe

R
2 = n,

and thus E|Vn| = n. The main advantage of defining Vn as a Poisson point process is motivated
by the following two properties: the number of points of Vn that lie in any region A follows a
Poisson distribution with mean given by

∫
A g(r, θ) dr dθ, and the numbers of points of Vn in

disjoint regions of the hyperbolic plane are independently distributed.

In this paper we restrict ourselves to 1
2 < α < 1. The restriction α > 1

2 guarantees that the
resulting graph has bounded average degree (depending on α and ν only): if α < 1

2 , then the
degree sequence is so heavy tailed that this is impossible (the graph is with high probability
connected in this case, as shown in [7]), and if α > 1, then as the number of vertices grows,
the largest component of a random hyperbolic graph has sublinear size (more precisely, its
order is n1/(2α)+o(1), see [6, Theorem 1.4] and [18]). It is known that for 1

2 < α < 1, with high
probability the graph Gn has a linear size component [6, Theorem 1.4] and the second largest

component has size Θ(log
1

1−α n) [28], which justifies referring to the linear size component as
the giant component. More precise results including a law of large numbers for the largest
component in these networks were established in [22].
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For ease of notation, we will assume ν = 1 throughout the paper; all our results, however,
hold for any constant ν. In fact, in this paper, we use a different representation, namely
the representation of the hyperbolic graph in the upper half-plane. For our purposes, the
representations are equivalent (see Section 2 for details), and for us it is easier to deal with
the latter. We consider an infinite rooted version of this graph (that is, a graph in which one
vertex is distinguished as the root, once more see Section 2 for details), which we shall denote
by G∞, and a finite version, corresponding to the previous model: for n ≥ 0, we let Gn denote
the restriction of G∞ to the rectangle [−π

2n,
π
2n]× [0, 2 log n], in which we identify the left and

right boundaries.

The contact process

In the contact process, each vertex of a graph is at any point in time either healthy (state 0) or
infected (state 1). The continuous-time dynamics is defined by the specification that infected
vertices become healthy with rate one, and transmit the infection to each neighboring vertex
with rate λ > 0. We refer to [32] for a standard reference on the contact process.

Given a subset A of the set of vertices V of a graph, we denote by (ξAt )t≥0 the contact process
starting from an initial configuration of infected vertices equal to A, and write simply (ξvt )t≥0

when A is a singleton {v} (when a superscript is not present, the initial configuration is either
clear from the context or unimportant). We will view ξAt either as a function from V to {0, 1},
or as a subset of V .

Our results

Our first result concerns the non-extinction probability of the contact process on G∞, starting
from only the root infected, which we denote by γ(λ). In particular, it shows that γ(λ) is
nonzero for all λ > 0, which means that the critical infection rate λc(G∞) is almost surely
equal to 0. Thus Theorem 1.1 should be read as a result on the asymptotic behavior of γ(λ),
as λ approaches this critical value by above. Given non-negative functions λ 7→ f(λ), g(λ),
we say that f(λ) � g(λ) as λ → 0 if there exist two positive constants c and C such
that cf(λ) ≤ g(λ) ≤ Cf(λ) for all λ small enough.

Theorem 1.1. As λ→ 0,

γ(λ) �

λ
1

2−2α , α ∈ (1
2 ,

3
4 ];

λ4α−1

log(1/λ)2α−1 α ∈ (3
4 , 1).

It is worth noting that such result has been shown in only a very limited number of other
examples. Indeed, to our knowledge so far it was only established for the configuration model
[12, 15, 35], and the so-called Pólya point graph [10] (which is the local limit of preferential
attachment graphs [5]), as well as for certain classes of dynamical networks [26]. We shall
comment further on the similarities and differences between all these results a bit later; in
particular the exponent in the power of λ seems to be a universal constant only depending on
the degree distribution, while the power of the logarithmic correction seems on the contrary to
be model dependent.

Our next results concern finite versions of the hyperbolic random graph and show metastability
type results, namely that the extinction time when starting from the fully occupied configuration
is exponential in the size of the graph (see Theorem 1.2), and furthermore that the density of
infected sites remains close to γ(λ) for an exponentially long time (see Theorem 1.4).
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For a finite graph G, we define τG as the extinction time of the contact process on G, when
starting from all vertices infected. This is the hitting time of the unique absorbing state of the
process, equal to the identically zero configuration.

Theorem 1.2. For any λ > 0 and α ∈ (1
2 , 1), there exist c > 0 and β ∈ (0, 1), such that

P(τGn > ecn) > 1− e−cnβ , ∀n ≥ 1.

The next result shows that there is no hope to take β = 1 in Theorem 1.2.

Proposition 1.3. For any α ∈ (1/2, 1), there are β, ε′ ∈ (0, 1) and a Gn-measurable event
An with probability P(An) > exp(−nβ), such that E[τGn | An] < exp(nε

′
).

Finally our last main result proves the convergence of the density of infected sites to the
non-extinction probability on the infinite graph G∞.

Theorem 1.4. For any λ > 0 and α ∈ (1
2 , 1), there exists c > 0 such that the following holds.

Fix (tn)n≥1 such that tn →∞ and tn < ecn for each n. Then, for any ε > 0,

P

(∣∣∣ |ξGn
tn |
n
− γ(λ)

∣∣∣ > ε

)
−→
n→∞

0.

Metastability results such as Theorems 1.2 and 1.4 for the contact process were first established
in 1984 for finite intervals of the line [14], and have since then been obtained in a large number
of other examples, including finite boxes of Zd (see [19, 33] and references therein), finite
regular trees [16, 38], random regular graphs [30, 36], the configuration model [12, 15, 35],
Erdós-Renyi random graphs [3], preferential attachment graphs [10], rank-one inhomogeneous
random graphs [11], as well as for a large class of general finite graphs [34, 39]. The general
idea of the proof is often similar in all these models, but the technical difficulties are specific
to each case. Here as well, the hyperbolic nature of the graphs we consider lead to some new
difficulties.

Overview of proofs

The proof of Theorem 1.1 is based on proving corresponding lower and upper bounds. For the
lower bounds, we use a standard argument: we show that there is a certain chance that the
root will infect a vertex of sufficiently large degree, from where on the infection then survives;
either directly infecting from there vertices of even higher degree, or indirectly infecting such
vertices using low degree vertices, therefore giving rise to two different regimes. The upper
bounds require some harder and more original work. They are based first on partitioning the
event of survival into different events, depending essentially on the distance to the origin and
the degree of the vertices which are reached by the contact process, in such a way that each of
the events has at most the desired probability to happen. Again, in both regimes we identify
different events, giving rise to different values. Also, interestingly our estimates rely on some
new facts about the non-extinction probability of the contact process which hold on general
graphs and which might as such be of independent interest; see in particular Lemma 5.5.

The proof of Theorem 1.2 is based on finding a large (linear-sized) connected subgraph on
which the contact process survives for a long time. The key idea is a suitable tessellation of the
upper half-plane into different boxes, such that a constant proportion of small degree vertices
belongs to this subgraph, and such that all vertices of sufficiently large degree belong to this
graph as well. Proposition 1.3 is shown by explicitly constructing a graph whose connected
components are of size at most cn1−α, therefore yielding a smaller extinction time.
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Finally, Theorem 1.4 makes use of the idea that if the process on the infinite graph starting
from only the root infected, survives for a long time then and only then it will escape from a
large neighborhood of the root. The proof of this idea is based on self-duality of the contact
process, and then by applying the first and second moment methods to the number of vertices
escaping from a large neighborhood (for corresponding upper and lower bounds, respectively);
The hyperbolic shapes of the neighborhoods, however, and in particular, the existence of very
high-degree vertices make this basic idea a bit delicate at times.

Discussion of results

In Theorem 1.1 we can observe a phase transition at α = 3
4 . This is interesting for different

reasons: recently it was observed that the value of α = 3
4 corresponds to a change of regime in

the local clustering coefficient averaged over all vertices of degree exactly k (see [21] for details)
- for α > 3

4 the clustering coefficient is of the order 1
k , whereas for 1

2 < α < 3
4 it is of the order

k2−4α (for α = 3
4 it is of the order log k/k). It would be interesting to investigate further the

link between these two results. Second, since random hyperbolic graphs have a power law
degree distribution with exponent χ := 2α+ 1 (see [24]), the phase transition given here as
well as the speed of decay to zero of γ(λ) is exactly the same as in the configuration model [35],
for both regimes. Given the similarities in the proof strategies in the two models this might
perhaps be less surprising, but it clearly raises the natural question whether a more general
theorem, with more general conditions on a random graph model, can be stated and proved.
In fact this striking fact had already been observed in another model, the Pólya-point graph,
already mentioned before. Indeed, in [10] it is shown that for χ ∈ [3,+∞), the non-extinction
probability also decays polynomially as a function of λ, with the same exponent as in the
configuration model [35], except for the power of the logarithmic correction, which suggests
that only the power of λ might be a universal constant.

Related work. Although the random hyperbolic graph model was relatively recently intro-
duced [29], several of its key properties have already been established. As already mentioned,
in [24], the degree distribution, the expected value of the maximum degree and global clustering
coefficient were determined (details on the local clustering coefficient were then established
recently in the already mentioned paper of [21]), and in [6], the existence of a giant component
as a function of α.

The threshold in terms of α for the connectivity of random hyperbolic graphs was given in [7].
The logarithmic diameter of the giant component was established in [37], whereas the average
distance of two points belonging to the giant component was investigated in [1]. Results on
the global clustering coefficient of the so called binomial model of random hyperbolic graphs
were obtained in [13], and on the evolution of graphs on more general spaces with negative
curvature in [20]. Finally, the spectral gap of the Laplacian of this model was studied in [27].

The model of random hyperbolic graphs for 1
2 < α < 1 is very similar to two different models

studied in the literature: the model of inhomogeneous long-range percolation in Zd as defined
in [17], and the model of geometric inhomogeneous random graphs, as introduced in [9] (see
these papers and the references therein for more details about these models). In both cases,
each vertex is given a weight, and conditionally on the weights, the edges are independent (the
presence of edges depending on one or more parameters). The latter model generalizes random
hyperbolic graphs.

Plan of the paper

The paper is organized as follows. In Section 2, we define more precisely the random graph
models on which we will work. We also recall basic facts and definitions about them, as well
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as for the contact process. In Section 3, we prove Theorem 1.2 and Proposition 1.3, which
are based on some basic geometric constructions that shall be used throughout the paper. In
Sections 4 and 5, we prove the lower and upper bounds in Theorem 1.1, respectively. Finally
Section 6 provides the proof of Theorem 1.4.

2 Preliminaries

2.1 Hyperbolic graph model

Following [22], we consider the continuum percolation model defined in the upper half-plane.
Thus we let

H := R× [0,∞),

and consider an inhomogeneous Poisson Point Process P on H with intensity measure µ given
by

dµ(x, h) =
α

π
e−αh dx dh.

The first coordinate of a point in H is sometimes called its horizontal coordinate (or x-
coordinate), and the second one its height. We then define G∞ be the graph whose vertex set
is the set of points of P , together with an additional (random) point ρ = (0,h), called the root,
where h is a random variable with density with respect to Lebesgue measure given by αe−αh.
Furthermore, two vertices v = (x, h) and v′ = (x′, h′) are connected by an edge in G∞ if, and
only if,

|x− x′| ≤ e(h+h′)/2.

For n ∈ N, we define the graph Gn, as the restriction of G∞ to the rectangle [−π
2n,

π
2n] ×

[0, 2 log n], in which we identify the left and right boundaries. Note that this may create new
edges between pairs of vertices which are close to the boundaries.

In [22] a precise correspondance is established between Gn and the model discussed in the
introduction, which indicates that all results that we prove here for Gn hold as well for the
former model.

Recall that we set ν = 1 and thus R = 2 log n. Consider the map Ψ : [0, R] × (−π, π] →
(−π

2n,
π
2n]× [0, R], with

Ψ : (r, θ) 7→ (θ
eR/2

2
, R− r),

between the Poissonized hyperbolic graph model from the introduction and the continuum
percolation model in the upper half-plane. Denote by Vn the vertex set of Gn. In [22] the
following result is shown:

Proposition 2.1 ([22]). There exists a coupling of Gn and Gn, such that with probability
tending to 1, as n→∞,

• Ψ(Vn) = Vn, and

• under the event above, for all u = (r, θ) and v = (r′, θ′) ∈ Vn, with r, r′ ≥ 3R/4, u and v
are neighbors in Gn, if and only if Ψ(u) and Ψ(v) are neighbors in Gn.

Since the proof of Theorem 1.4 only involves vertices at height smaller than ε log n with ε
some small constant, the proposition above is enough to transfer our proofs from Gn to Gn.
Theorem 1.2 and Proposition 1.3 require explicit control of the probabilities of certain bad
events. The coupling is not enough to directly transfer the results; however, the proofs of both
results can be easily modified for Gn, so for consistency we give the proofs still in Gn.
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Now for a vertex v = (x, h) ∈ G∞, we denote by B∞(v, 1) the ball centered at v containing its
neighbors, that is,

B∞(v, 1) := {v′ = (x′, h′) ∈ G∞ : |x− x′| ≤ e(h+h′)/2}.

More generally, for r ∈ N, we let B∞(v, r) denote the subset of vertices of G∞ being at graph
distance r from v, that is, the set of vertices that can be reached from v by a path of length at
most r. As in the infinite case, we define for any r > 0, and any vertex v ∈ Gn, by Bn(v, r) for
the ball of graph distance r in Gn.

We need one more fact. Define a rooted graph as a couple (G, ρ), with G some graph and ρ
some (possibly random) distinguished vertex of G. A finite rooted graph (G, ρ) is said to be
uniformly rooted, if ρ is a vertex chosen uniformly at random among the vertices of G. A
sequence of rooted graphs (Gn, ρn)n≥1 is said to converge locally towards (G∞, ρ) if for every
fixed r > 0 and every fixed graph H, limn→∞ P(Bn(ρ, r) ∼= H) = P(B∞(ρ, r) ∼= H). In our case
it readily follows from the definitions of Gn and G∞, that the following holds.

Lemma 2.2. The rooted graph (G∞, ρ) is the local limit of the sequence of uniformly rooted
graphs (Gn, ρn)n≥1, as n→∞.

2.2 Contact process

Here we recall some elementary facts about the contact process, as well as some results from [35].
We will keep using the abuse of notation that identifies, for a set S, the element ξ ∈ {0, 1}S
with the set {x ∈ S : ξ(x) = 1}.
Given a graph G = (V,E) and λ > 0, a graphical construction for the contact process on G
with rate λ is a family of Poisson point processes on [0,∞):

Dx : x ∈ V all with rate one, and

D(x,y) : x, y ∈ V, {x, y} ∈ E all with rate λ;

all these processes are independent. If t ∈ Dx we say that there is a recovery mark at x at
time t (or in short, at (x, t)), and if t ∈ D(x,y) we say that there is a transmission arrow from x
to y at time t (or in short, from (x, t) to (y, t)). An infection path in the graphical construction
is a right-continuous, constant-by-parts function g : I → V for some interval I, so that:

− for all r ∈ I, there is no recovery mark at (g(r), r);

− whenever γ(r) 6= γ(r−), there is a transmission arrow

from (γ(r−), r) to (γ(r), r).

Given (x, s), (y, t) ∈ V × [0,∞) with 0 ≤ s ≤ t, we write (x, s) (y, t) either if (x, s) = (y, t)
or in the event that there is an infection path g : [s, t] → V with g(s) = x and g(t) = y.
For A ⊆ V , we write A× {s} (y, t) if we have (x, s) (y, t) for some x ∈ A. Similarly we
write (x, s) B × {t} and A× {s} B × {t}.
Given any initial configuration A ⊆ V , the contact process started from A infected can be
defined from the graphical construction by setting

ξAt (x) = 1{A× {0} (x, t)}, t ≥ 0, x ∈ V ;

as mentioned earlier, we write ξxt when A = {x}, and we omit the superscript when it is clear
from the context or unimportant.
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Due to the invariance of Poisson point processes under time reversal, for any A,B ⊆ V we
have P(A× {0} B × {t}) = P(B × {0} A× {t}); this immediately gives the self-duality
relation P(ξAt ∩B 6= ∅) = P(ξBt ∩A 6= ∅). In case B = {x}, this gives

P
(
ξAt (x) = 1

)
= P (ξxt ∩A 6= ∅) . (2.1)

Let us also repeat the definition of the extinction time

τG := inf{t : ξVt = ∅},

that is, the time it takes for the process started from all infected to reach the (absorbing)
all-healthy configuration.

We now state a result about the contact process on star graphs.

Lemma 2.3. There exists c̄ > 0 such that the following holds for any λ < 1 and any d ≥
1/(c̄λ2). Let Sd denote the star graph consisting of a center vertex o with d neighbors, and
let (ξt)t≥0 denote the contact process with rate λ on Sd. Then,

|ξ0| > c̄λd =⇒ P (|ξt| > c̄λd) > 1− exp{−c̄λ2d} for any t ∈ [1, exp{c̄λ2d}]. (2.2)

Moreover,

ξ0 = {o} =⇒ P (|ξt| > c̄λd) >
1

4
for any t ∈ [1, exp{c̄λ2d}]. (2.3)

Since the proof is essentially the same as that of Lemma 3.1 in [35], we omit it.

We will need the following consequence of the above lemma. For d ≥ 1, denote by Ld the graph
formed by the half line N0 = {0, 1, . . .}, where to each vertex m ∈ N0, we attach d additional
neighbors (with the additional neighbors attached to distinct points of N0 being all distinct).

Lemma 2.4. There exist positive constants c and C such that for any λ < 1/2, the contact
process with infection rate λ survives with probability at least c on the graph Ld, when starting
from the origin infected, where d = C log(1/λ) · λ−2.

Proof. Let C > 0 be large, to be fixed later. Fix λ < 1/2, define d as in the statement of the
lemma and let (ξt)t≥0 denote the contact process on Ld with ξ0 = {0}.
Define tn := 1 + exp{c̄λ2d} · n for all n ∈ N0, where c̄ is the constant of Lemma 2.3, and define
the discrete-time process

ζn(m) := 1{|ξtn ∩ Sm| ≥ c̄λd}, n ∈ N0, m ∈ N0,

where Sm denotes the subgraph of Ld consisting of the star graph containing m ∈ N0

and its d extra neighbors (so not including the neighbors of m in N0). Note that (2.3)
gives P (ζ0(0) = 1) = P (|ξ1 ∩ S0| > c̄λd) > 1

4 .

Now, assume that for some m,n we have ζn(m) = 1, that is, |ξtn ∩ Sm| ≥ c̄λd. Then, by (2.2),
with probability larger than 1− exp{−c̄λ2d} = 1− λc̄C we also have ζn+1(m) = 1.

Moreover, in case ζn(m) = 1 and ζn(m+ 1) = 0, there is a high probability that the infection
from Sm at time tn will pass to Sm+1 in the time interval [tn, tn+1] and occupy it sufficiently
long to produce ζn+1(m+ 1) = 1. Indeed, as already mentioned, the infection remains in Sm
during [tn, tn+1] with probability larger than 1 − λc̄C ; condition on this. During this time
interval, we make propagation trials as follows: starting a trial at a time t ∈ [tn, tn+1 − 3], we
demand that during [t, t + 1] some infected vertex of Sm infects m; next, before time t + 2
and before recovering, m infects m+ 1; finally, the infection spreads in Sm+1 until time t+ 3,
so that |ξt+3 ∩ Sm+1| > c̄λd. The probability of success of such a trial is larger than cλ2 for
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some c > 0, by (2.3). The number of trials available is b(tn+1 − tn)/3c = bexp{c̄λ2d}/3c =
b(1/λ)c̄C/3c. Hence, by taking C large enough and recalling that λ < 1/2, the probability to
have a successful trial can be made as close to one as desired.

Using these considerations, the proof is completed with a standard argument, showing
that (ζn)n∈N0 stochastically dominates a site percolation process (ζ̃n)n∈N0 on the oriented graph
with vertex set N0×N0 and all oriented edges of the form 〈(m,n), (m,n+ 1)〉 and 〈(m,n), (m+
1, n+ 1)〉. This process can be taken one-dependent, and so that the probability of any site
being open is above 1 − δ, for any fixed δ > 0, by taking C large enough (and uniformly
over λ ∈ (0, 1/2)). Consequently, it has an infinite percolation cluster containing the origin
with positive probability if δ is small enough (see [32, pages 13-16]).

3 Proofs of Theorem 1.2 and Proposition 1.3

Our approach for proving Theorem 1.2 consists in showing that there are some c > 0 and
β ∈ (0, 1) such that with probability at least 1 − e−cnβ the random graph Gn is “good” in
the sense that it contains a special structure where the process is able to survive for an
exponentially long time in n.

In order to find such a structure fix 0 < ε < 1
log 2 , and set L := α+1

2α · log 2, which is chosen to

satisfy log 2 < L < log 2
α . Next, construct a sequence Bj,k of non overlapping open boxes of

height L and width 2j as follows:

• Take k0 = bn1−ε log 2c, which tends to infinity with n from our assumption on ε. We
define the first row of adjacent boxes {B0,k}, where k ranges from 0 to k02bε lognc − 1, as
a row of adjacent boxes of width 1/2 and height L of the form B0,k = (k2 ,

k+1
2 )× (0, L).

• Analogously, for each j ∈ {1, . . . , bε log nc} we construct a row of adjacent boxes {Bj,k}
where now k ranges from 0 to k02bε lognc−i, of width 2j−1 and height L of the form
Bj,k = (2j−1k, 2j−1(k + 1))× (jL, (j + 1)L), that is, we construct the row Bj,· directly
on top of row j − 1; the only difference being that boxes now have width 2j−1.

Each Bj,k at row j lies below exactly one
box Bj+1,bk/2c from row j+1, which we call
its parent. Conversely, any Bj+1,k at row
j + 1 lies on top of exactly two boxes Bj,2k
and Bj,2k+1 from row j, which we refer to
as its children. In the picture to the right
we can see an example of the construction
where B2,0 is highlighted as the parent of
B1,0 and B1,1.

B0,0 B0,1 B0,2 B0,3 B0,4 B0,5 B0,6 B0,7

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1{L

Using this partial order relation between boxes we define a new graph G which will be
fundamental in our construction:

Definition 3.1. Let B := {Bj,k}j,k be as above. We define G as the graph with vertex set B
where any two B,B′ ∈ B are connected by an edge if either:

• B is the parent of B′ (or viceversa), or

• B and B′ are adjacent boxes at row bε log nc.
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The reason we connect parents to their children is that vertices contained in the corresponding
boxes are connected by an edge in Gn: indeed, take some (x, h) ∈ Bj,k and (x′, h′) ∈ Bj+1,bk/2c
and notice that from the definition of the boxes we have |x− x′| ≤ 2j and h, h′ ≥ jL so that

|x− x′| ≤ 2j ≤ ejL ≤ exp

(
h+ h′

2

)
,

and hence (x, h) and (x′, h′) are neighbors in Gn. The same reasoning allows us to show that
vertices contained in adjacent boxes (that is, in pairs of boxes of the form Bj,k and Bj,k+1) are
connected by an edge, since these also satisfy |x− x′| ≤ 2j and h, h′ ≥ jL. We will make use
of the latter property only for boxes at row bε log nc though.

When taking λ small, the contact process tends to die out quickly, except on “good” regions
where vertices have an exceptionally large amount of neighbors, enabling the process to survive
for a very long time. We will show next that above some fixed row j0, with a large probability
the boxes defined above induce large cliques in Gn and hence define good regions. Indeed,
note that every box induces a clique: observe that for any two vertices (x, h), (x′, h′) ∈ Bj,k we
have |x− x′| ≤ 2j−1 and h, h′ ≥ jL, and hence we obtain that (x, h) and (x′, h′) are neighbors
in Gn, as in the previous argument.

To see that said cliques are large enough, observe that the amount of vertices within Bj,k is a
Poisson random variable Pj,k with parameter

µj := 2j−1

∫ (j+1)L

jL

α

π
e−αydy = c 2je−αjL, (3.1)

where c is a positive constant. From our assumption L < log 2
α it follows that µj ↗∞ with j,

and even further, using a tail bound for Poisson random variables we have that there is some
j0 independent of n such that for all j ≥ j0,

pj := P(Pj,k ≥ λ−3) ≥ 1− (eλ3µj)
λ−3

e−µj ≥ 1−De−µj/2, (3.2)

for some D independent of µj and n. Since this expression tends to 0 as j →∞, we conclude
that the corresponding cliques at rows with a sufficiently large index are very likely to be large.

Say now that a box Bj,k is good if it contains at least λ−3 vertices in Gn. We define a subgraph
Ḡ ⊆ G obtained by

• removing from G all vertices B ∈ B that are not good, and

• removing all connected components from the remaining graph not containing a box at
row bε log nc.

Figure 1: Good boxes are shaded in light red, allowing us to obtain Ḡ which consists of two
connected components in this case.

As shown in Figure 1, the resulting graph Ḡ consists of a collection of percolated binary trees
all having their roots at row bε log nc, and these roots might or might not be connected. The
next result states that with a large probability Ḡ is not only connected, but also contains a
positive fraction of the whole graph Gn:

10



Lemma 3.2. There are some fixed c > 0 and δ, β ∈ (0, 1) such that

P(Ḡ is connected, and |Ḡ| > δn) ≥ 1− e−cnβ .

Proof. Notice that from the definition of G, the subgraph Ḡ is connected if and only if all
boxes (Bbε lognc,k)k are good. Now, applying (3.1) and (3.2) for j = bε log nc we obtain

P(Bj,k is good) > 1−D exp(−Cnε(log 2−αL)),

for all k, where C is some positive constant. Since there are at most k0 = bn1−ε log 2c such
boxes, we obtain that for that value of j,

P(Bj,k is good ∀k) ≥ 1−Dn1−ε log 2 exp(−Cnε(log 2−αL)), (3.3)

which is already of the form 1− e−cnβ . It remains to show that |Ḡ| > δn with a probability of
the same order, for which we assume that the event on the left of (3.3) holds. Call Ḡj the set
of vertices of Ḡ at row j and define the events

Ej := {|Ḡj | > 2(1− f(j))|Ḡj+1|},

with f(j) = 1/j2. Observe that for any fixed j, under Ej , Ej+1, . . . , Ebε lognc we have

|Ḡj | > |Ḡbε lognc|
bε lognc−1∏

`=j

2(1− f(`)) > ck02bε lognc−j−1 ≥ c2−j−2n, (3.4)

where we have used that at row bε log nc all boxes are good, and where c =
∏∞
`=1(1− f(`)) is

a positive constant. The result then follows if we show that there is some j0 independent of n
such that

P(Ej0 , Ej0+1, . . . , Ebε lognc) ≥ 1− e−cnβ .

From the construction of Ḡ and the independence of the events {Bj,k is good}j,k we know
that given |Ḡj+1| the random variable |Ḡj | follows a binomial distribution with parameters
pj and 2|Ḡj+1|. On the other hand by (3.2) there is j0 large such that for j > j0 we have
1− f(j) < pj , and thus using Chernoff’s bound we obtain

P
(
Ej
∣∣ |Ḡj+1|

)
≥ 1− exp

(
−µjf(j)|Ḡj+1|

2

)
,

which is increasing in |Ḡj+1|. From the discussion leading to (3.4), there is a constant c̄ > 0,
such that

P(Ej | Ej+1, . . . , Ebε lognc) ≥ 1− exp
(
−c̄n2−jµjf(j)

)
≥ 1− exp

(
−c̄n1−αεLf(ε log n)

)
,

where we used that 2−jµjf(j) is decreasing in j. Finally we conclude that

P(Ej0 , Ej0+1, . . . , Ebε lognc) ≥ 1− bε log nce−c̄n1−αεLf(ε logn),

which is larger than 1− e−cnβ , for any β < 1− αεL, and some c > 0 depending on β.

We are now ready to give the proof of Theorem 1.2: take a realization of Gn such that Ḡ is
connected and |Ḡ| > δn, and construct the subgraph Ḡn ⊆ Gn with vertex set Gn ∩ ∪B∈ḠB
as follows:

11



1. For each B ∈ Ḡ choose an arbitrary vertex vB and let all the remaining vertices in B to
be connected by an edge to vB (and to no other vertex),

2. Add the edge {vB, vB′} to Ḡn if and only if B ∼ B′ in Ḡ.

It follows that Ḡn is composed of at least δn stars of size no smaller than λ−3, which are
connected by their centers. For such a structure it was already proved in [34] that the infection
starting from the fully infected configuration satisfies

P[τḠn
> ecn] > 1− e−cn

for some c > 0, and the result follows.

�

We now provide the proof of Proposition 1.3 by constructing the bad event An as follows:
Choose some a ∈ (1

2 , 1) and some ε ∈ (0, 1) with a + ε < 1. Take now an ordered sequence
{xk} of evenly spaced points in [−π

2n,
π
2n] with distance equal to n1−a. Observe that k ranges

from 1 to bπnac. We use these points to divide the space [−π
2n,

π
2n]× [0, 2 log n)] into the sets

B0 = {(x, h), h ≥ ε log n}

Bk = {(x, h), |x− xk| ≤ 1
2n

ε and h < ε log n}

Ck = {(x, h), xk + 1
2n

ε < x < xk+1 − 1
2n

ε and h < ε log n},

which are well defined because ε < 1 − a. It follows directly from the definition of µ that
µ(B0) ≤ n1−αε, and for all k ≥ 1, µ(Bk) ≤ nε and µ(Ck) ≤ n1−a. As a result, there are
positive constants c and C, such that

P(B0 ∩Gn = ∅) ≥ e−n
1−αε

P(Bk ∩Gn = ∅) ≥ e−n
ε

for all k ≥ 1

P(|Ck ∩Gn| ≥ Cn1−a) ≤ e−cn
1−a

for all k ≥ 1.

Define An as the event in which there are no vertices in any of the Bk (including k = 0), and
in every Ck there are at most Cn1−a vertices. Using that all sets correspond to disjoint areas,
we obtain

P(An) ≥ e−n
1−αε (

e−n
ε)πna (

1− e−cn1−a
)πna

≥ 1

2
e−π(n1−αε+na+ε) = e−n

β
,

for some β > 0.

Now observe that if we take v = (x, h) and v′ = (x′, h′) belonging to different Ck we necessarily

have |x− x′| > nε, since there is at least one set Bk between them, and also e
h+h′

2 < nε, so
that v and v′ cannot be neighbors in Gn. It follows that on An the graph Gn is composed of
connected components each of size at most Cn1−a. As shown in [39, Lemma 2.3], this entails
that the expected extinction time on each of these connected components is at most eC

′n2−2a
,

for some other constant C ′ > 0. Since there are at most n such components, we finally deduce

E(τGn · 1An) ≤ n exp(C ′n2−2a),

and the result follows from the assumption a > 1/2.
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4 Survival probability: lower bounds

In this section we prove the lower bounds in Theorem 1.1. We give two different strategies that
show that the contact process survives for a long time. In a nutshell, in the case α ∈ (1

2 ,
3
4 ]

the strategy of surviving corresponds to finding a neighbor of the root of sufficiently high
degree, from which the infection will then pass over to vertices of even higher degree, and thus
surviving an infinite amount of time. In the case α ∈ (3

4 , 1) the strategy is different: a neighbor
at a high level is infected, but all its neighbors of low degree are needed to infect a vertex of
even higher degree (using Lemma 2.4). We make this more precise in the next two subsections.

4.1 Case α ∈ (1
2
, 3

4
]

The goal is to prove the following lemma:

Lemma 4.1. Let α ∈ (1
2 ,

3
4 ]. Then

γ(λ) > cλ
1

2−2α ,

for some sufficiently small constant c = c(α) depending on α only.

Proof. We consider the contact process (ξt) on G∞ started from a single infection at the
root, ξ0 = 1{o}. Let h∗ := 1

1−α log(C/λ), with C some large constant to be chosen later. Let E0

denote the event that the height of the root is below h∗. Also define τ0 := 0 and let τ ′0 be the
first recovery time at o.

Let E1 denote the event that E0 occurs, and that o has a neighbor v̂1 ∈ R × [h∗, h∗ + 1),
and there is a transmission from o to v̂1 at a time τ1 ∈ [τ0, τ

′
0). Recursively, assume that

events E0 ⊃ . . . ⊃ Ek are defined, that they only involve information on the portion of the graph
contained in R×[0, h∗+k), and that Ek involves a vertex v̂k ∈ R×[h∗+k−1, h∗+k) receiving the
infection at a time τk. On Ek, let τ ′k denote the first recovery time at v̂k after τk. Then, let Ek+1

be the event that Ek occurs, and additionally v̂k has a neighbor v̂k+1 ∈ R× [h∗+ k, h∗+ k+ 1),
and there is a transmission from v̂k to v̂k+1 at a time τk+1 ∈ [τk, τ

′
k). Clearly, if ∩k≥0Ek occurs,

then ξt 6= ∅ for all t, that is, the process survives.

We now give lower bounds to the probabilities of these events, starting with

P(E0) =

∫ h∗

0
αe−αh dh >

1

2
,

if λ is small (and hence h∗ is large). Next, denoting the height of o by ho, the number N0 of
neighbors of o in R× [h∗, h∗ + 1) follows a Poisson distribution with parameter∫ h∗+1

h∗

exp

{
ho + h

2
− αh

}
dh ≥ β0 :=

∫ h∗+1

h∗

exp

{(
1

2
− α

)
h

}
dh ≥ c

(
λ

C

) 2α−1
2−2α

,

with c some positive constant depending only on α (which may change from line to line).
Hence,

P(E1 | E0) ≥ λ

1 + λ
· P(N0 ≥ 1 | E0) ≥ cλ · β0 ≥ c · C−

2α−1
2−2α · λ

1
2−2α ,

where we used that λ is small, so that 1 + λ < 2 and e−β0 > 1
2 .

Next, on Ek, let Nk denote the number of neighbors of v̂k on R × [h∗ + k, h∗ + k + 1). We
have that (conditioned on Ek) the law of Nk is Poisson with parameter larger than

βk :=

∫ h∗+k+1

h∗+k
exp

{
h∗ + k − 1 + h

2
− αh

}
dh ≥ c exp {(1− α)(h∗ + k)} =

cC

λ
· e(1−α)k.
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Then, by the strong Markov property,

P(Eck+1 | Ek) = E
[

1

1 + λNk

∣∣∣∣Ek] ≤ P(Nk ≤ βk/2 | Ek) +
1

1 + λβk/2
.

By a Chernoff bound we have, P(Nk ≤ βk/2 | Ek)� β−1
k , so we obtain

P(Eck+1 | Ek) ≤
c

λβk
≤ c

C
· e−(1−α)k.

Putting these bounds together we have

P (∩k≥0Ek) ≥
1

2
· cC−

2α−1
2−2α · λ

1
2−2α ·

∏
k≥1

(
1− c

C
· e−(1−α)k

)
.

Recalling that c depends only on α, and choosing C > c, so that the infinite product on the
right-hand side is positive, the proof is complete.

4.2 Case α ∈ (3
4
, 1)

The goal is to prove the following lemma:

Lemma 4.2. Let α ∈ (3
4 , 1). Then

γ(λ) > c · λ4α−1

log(1/λ)2α−1
,

for some sufficiently small constant c = c(α) depending on α only.

Before we prove this, we state an auxiliary result. Recall the definition of the graph Ld from
Lemma 2.4, consisting of a “half-line of stars”.

Lemma 4.3. Let C > 0 and d = C log(1/λ)/λ2 be as in Lemma 2.4, and let h∗∗ := 2 log(2d).
Let v = (xv, hv) ∈ H with hv > h∗∗, and let Gv

∞ be the random hyperbolic graph with a vertex
artificially added at v. Then, with probability tending to one as λ → 0, Gv

∞ has a subgraph
isomorphic to Ld, entirely contained in [xv,∞) × [0,∞), and so that v plays the role of the
center of the first star of the half-line.

Let us now show how this lemma allows us to prove our lower bound on the survival probability.

Proof of Lemma 4.2. As before, we start a contact process on G∞ with only the root o
infected. Writing o = (xo, ho), we first consider the event E0 that the root has at least one
neighbor in [xo,∞) × [h∗∗,∞). On this event, we let v̂ = (xv̂, hv̂) denote the neighbor of o
on [xo,∞)× [h∗∗,∞) such that xv̂ is minimal. Furthermore, let E1 be the event that E0 occurs
and there is a transmission from o to v̂ before the first recovery at o. We then have

P(E1) ≥ cλ

1 + λ
· e( 1

2
−α)h∗∗ ≥ cλ4α−1

log(1/λ)2α−1
,

for some positive constant c that only depends on α. Conditioned on E1, since the graph
on [xv̂,∞)× [0,∞) is still unrevealed, and by Lemma 4.3, with probability larger than 1

2 (if λ
is small), v̂ is the first star in a copy of Ld entirely contained in [xv̂,∞)× [0,∞). Conditioned
on this subgraph being present, the infection then survives with a probability bounded from
below by a positive constant, uniformly in λ, by Lemma 2.4.
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It remains to prove the auxiliary result:

Proof of Lemma 4.3. By invariance of the point process under horizontal translations, it suffices
to treat the case xv = 0. We define Hk := h∗∗ + k for k ≥ 0; also let

`k := eHk−2, k ≥ 0, L0 := 0, Lk :=
k−1∑
j=0

`j , k ≥ 1.

Next, define the boxes

Sk := [Lk, Lk+1)× [Hk, ∞), S′k := [Lk, Lk+1)× [0, 1], k ≥ 0;

note that they are all disjoint. We now state and prove two claims about these boxes.

Claim 4.4. Let k ∈ N and condition on a = (xa, ha) ∈ Sk being a vertex of Gv
∞. Then, a has

a neighbor in Sk+1 with probability larger than 1− exp{− 1
αe

(1−α)(h∗∗+k)−1}.

Proof. First note that any vertex b = (xb, hb) ∈ Sk+1 is necessarily a neighbor of a, since

|xa − xb| ≤ `k + `k+1 = eHk−2 + eHk−1 ≤ eHk ≤ e
ha+hb

2 .

Hence, we only need to estimate the probability that Sk+1 has no vertices. Since the number
of vertices in Sk+1 is Poisson with parameter at least

`k+1 ·
∫ ∞
Hk+1

e−αhdh =
1

α
· e(1−α)(h∗∗+k)−1,

the result follows.

Claim 4.5. The following holds for λ small enough: let k ∈ N and condition on a = (xa, ha) ∈
Sk being a vertex of Gv

∞. Then, a has at least d neighbors in S′k with probability larger
than 1− exp{−cdek/2}, for some c > 0 that does not depend on λ or k.

Proof. First note that, since eHk/2 � 1
2e
Hk−2 = 1

2`k for any k if λ is small, at least one of the
boxes

[xa − eHk/2, xa]× [0, 1] and [xa, xa + eHk/2]× [0, 1]

is contained in S′k. Moreover, any vertex in these two boxes is connected by an edge to a,
since ha ≥ Hk. The number of vertices inside any of the two boxes is Poisson with parameter

eHk/2
∫ 1

0
e−αhdh =

1− e−α

α
· eHk/2 = 2d · ek/2.

By a Chernoff bound, such a Poisson random variable is larger than d with probability larger
than 1− exp{−cdek/2} for some universal constant c > 0, completing the proof.

Now, combining the two claims and independence of the point process in disjoint pairs of
boxes, the probability that we can find a sequence v0 = v, v1, v2, . . . so that for every k we
have vk ∈ Sk, vk ∼ vk+1 and vk has at least d neighbors in S′k, is larger than

1−
∞∏
k=0

(
1− exp

{
− 1

α
e(1−α)(h∗∗+k)−1

})
· (1− exp{−cdek/2}),

which can be made as close to 1 as desired by taking λ small, since h∗∗ →∞ as λ→ 0.
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5 Survival probability: upper bounds

We prove here the upper bounds in Theorem 1.1. We start with a general result (see Lemma 5.1
below) regarding the existence of infection paths.

5.1 Infection paths and ordered traces

Given a graph G = (V,E), we define Γ∞ = Γ∞(G) as the set of all finite and infinite sequences
of the form (γ(0), γ(1), . . .) with γ(0), γ(1), . . . ∈ V and γ(i) ∼ γ(i+ 1) for each i. Elements
of Γ∞ are called vertex paths; the length of a finite vertex path γ = (γ(0) . . . , γ(k)) is defined
as |γ| := k; in case γ is infinite, we set |γ| =∞.

Assume given a graphical construction for the contact process (ξt)t≥0 with some rate λ > 0 on G.
Recall the definition of infection paths from Section 2.2. Given an infection path g : I → V ,
where I ⊆ R is an interval, we say that the ordered trace of g is the vertex path γg =
(γg(0), . . .) ∈ Γ∞ obtained by setting γg(0) as the vertex where g starts, g((inf I)+), and letting
the subsequent vertices of γg be the vertices visited by g in order.

Lemma 5.1. Assume λ < 1
2 . Given γ ∈ Γ∞, the probability that there exists t ≥ 0 and an

infection path g : [0, t]→ V having γ as its ordered trace is at most (2λ)|γ|.

Proof. Fix γ ∈ Γ∞. For each t ≥ 0, define Xt as the largest value of i ∈ {0, . . . , |γ|} such that
there is an infection path g : [0, t]→ V with g(0) = γ(0) and ordered trace γg = (γ(0), . . . , γ(i))
(let Xt = −∞ in case no such i exists). Let

τ = inf{t : Xt ∈ {−∞, |γ|}},

and note that the event described in the statement of the lemma occurs if and only if Xτ = |γ|.
Next, define

Mt = (2λ)−Xt , t ≥ 0,

so that Mτ = 0 when Xτ = −∞. We claim that (Mτ∧t)t≥0 is a supermartingale with respect
to the natural filtration (Ft)t≥0 of the Poisson processes in the graphical construction. To see
this, note that, on {τ > t},

d

ds
E[Mt+s | Ft]

∣∣∣∣
s=0

=
(

(2λ)−(Xt−1) − (2λ)−Xt
)

+ λ
(

(2λ)−(Xt+1) − (2λ)−Xt
)

= (2λ)−Xt ·
(

2λ− 1 +
1

2
− λ

)
< 0,

assuming λ < 1
2 . Now, the optional stopping theorem gives

1 = E[M0] ≥ E[Mτ ] ≥ (2λ)−|γ| · P(Mτ = (2λ)−|γ|) = (2λ)−|γ| · P(Xτ = |γ|),

completing the proof.

In what follows, we write, for h > 0 and d > 0,

D(h) =
1

α− 1
2

· eh/2, H(d) = D−1(d) = 2 log

((
α− 1

2

)
· d
)
. (5.1)

Note that D(h) corresponds to the expected degree of a vertex at height h; the value H(d)
should be thought of as a height compatible with degree d.
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5.2 Regime α ∈ (1
2
, 3

4
]

The goal of this section is to prove the following proposition:

Proposition 5.2. Let α ∈ (1
2 ,

3
4 ]. Then

γ(λ) < Cλ
1

2−2α ,

for some sufficiently large constant C = C(α) depending on α only.

Proof. Let d0 = cλ−
1

2−2α for a sufficiently small constant c = c(α) > 0. Call a vertex to be red
if its height is at least h0 = H(d0) (in other words its expected degree is at least d0), and all
others blue. Starting from o (that was artificially added), we say we exit the k-th neighborhood
of (G∞, o), if either the infection spreads through a path of all blue vertices of length k, or if a
red vertex at distance less than k from o is infected, or if a blue vertex already appearing on a
blue path becomes re-infected (we do not claim that the vertex healed in the meantime, we
just say that there was another infection that took place, that is, another transmission arrow
in the graphical construction). We will show that for k = log(1/λ), the probability to exit

the k-th neighborhood is at most Cλ
1

2−2α , thus proving the desired statement. We define the
following events:

E1 = {o is red}

E2 ={o is blue, there exists a path of length 0 ≤ j < k of (all different) infected blue vertices,

followed by a red vertex that is infected}

E3 ={o is blue, there exists a path of (all different) blue vertices of length k

through which the infection travels}

E4 ={o is blue, there exists a path of (all different) blue vertices of length 1 ≤ j < k

followed by a blue vertex that appeared previously on the path that is infected again}

It is clear that if none of E1, E2, E3, E4 happens then the infection does not survive.

For E1, the probability that o is red is (C = C(α) is a sufficiently large constant that changes
from line to line),

α

∫
h≥h0

e−αhdh = e−αh0 = Cλ
2α

2−2α < Cλ
1

2−2α .

Next, consider a path of length 1 ≤ j < k, of (all different) blue vertices followed by a red
vertex, through which the infection travels. For j+1 (ordered) distinct vertices o, x1, . . . , xj , let
F2(o, x1, . . . , xj) be the indicator function for vertex x1 being infected by o; for i = 2, . . . , j− 1,
xi being blue and being infected by xi−1, and finally, xj being red and being infected by xj−1.
By the multivariate Mecke formula (see for example [31, Theorem 4.4]) and Lemma 5.1, we
have

E

 6=∑
o,x1,...,xj

(F2(o, x1, . . . , xj))


≤ (Cλ)j

∫
h<h0

∫
h1<h0

· · ·
∫
hj−1<h0

∫
h′≥h0

e(1−α)(h1+...+hj−1)e( 1
2
−α)(h+h′) dh′dhj−1 . . . dh1dh

≤ (Cλ)je(1−α)(j−1)h0+( 1
2
−α)h0 ≤ (Cc2−2α)j · λ1− 1−2α

2−2α ,
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where the sum is over (j + 1)-tuples of vertices being all different; indeed, the Mecke formula
gives the desired integral representation for the expected number of vertices in the desired
region, and since conditional under having points at certain locations the probability of having
infections is bounded by Lemma 5.1, the expected number of infection paths is the product of
the existence of paths together with the indicator variable of having an infection throughout
the path, giving the desired formula. Therefore,

E

k−1∑
j=1

6=∑
o,x1,...,xj

(F2(o, x1, . . . , xj))

 ≤ λ1− 1−2α
2−2α ·

k−1∑
j=1

(Cc2−2α)j ≤ Cλ
1

2−2α ,

where in the the last inequality we assumed c sufficiently small so that the sum is convergent.
Note that in order for E2 to hold, there must exist 1 ≤ j < k and o, x1, . . . , xj−1, xj so that
F2(o, . . . , xj−1, xj) = 1, and hence, by a union bound we have the desired upper bound on the
probability of E2.

By the same argument, for E3, the probability of having a path of (all different) blue vertices
of length k = log(1/λ) through which the infection travels is at most

(Cλ)k
∫
h≤h0

∫
h1≤h0

· · ·
∫
hk≤h0

e(1−α)(h1+...+hk−1)e( 1
2
−α)(h+hk) ≤ λ(Cc2−2α)k−1 ≤ Cλ

1
2−2α ,

where we assumed again c sufficiently small, and used α > 1/2 for the last inequality.

Finally, for the probability that o is blue, and that there is a path of (all different) blue
vertices of length 1 ≤ j < k through which the infection travels, followed by a blue vertex that
appeared previously on the path, observe that for the last vertex that is repeated, there are j+1
choices to choose the vertex. Since this vertex is already there, there is no additional factor
corresponding to the intensity of having a vertex there, there is however an additional factor
λ for re-infecting the previously appeared vertex. Let F4(o, x1, . . . , xj , xr) be the indicator
function for vertex x1 being infected by o; for i = 2, . . . , j− 1, xi being blue and being infected
by xi−1 (all vertices up to xj being distinct), and finally, xr is infected by xj , where xr is a
repeated vertex (for which there are j + 1 choices). Once again by the multivariate Mecke
formula we have (summing over all tuples of vertices where only the last vertex is repeated, all
others being distinct),

E

k−1∑
j=1

∑
o,x1,...,xj ,xr

(F4(o, x1, . . . , xj , xr))


≤

k−1∑
j=1

(Cλ)j+1(j + 1)

∫
h≤h0

∫
h1≤h0

· · ·
∫
hj≤h0

e(1−α)(h1+...+hj−1)e( 1
2
−α)(h+hj) dhj . . . dh1dh

≤
k−1∑
j=1

(j + 1)λ2(Cc2−2α)j−1 ≤ Cλ2 ≤ Cλ
1

2−2α ,

where the sum is over tuples of vertices with (o, x1, . . . , xj) being all different and xr ∈
{o, x1, . . . , xj}, and where we used for the last inequality that α ≤ 3/4. By taking a union
bound over the probabilities of all events E1, E2, E3, E4, the proof is finished.

5.3 Regime α ∈ (3
4
, 1)

The goal of this section is to prove the following proposition.
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Proposition 5.3. Let α ∈ (3
4 , 1). Then

γ(λ) < C · λ4α−1

log(1/λ)2α−1

for some sufficiently large constant C = C(α) depending on α only.

Before turning to the proof of this result, we need to make a detour, with several definitions
and intermediate results. To justify why this is needed, we first point out that, in the upper
bound for the case α ∈ (1

2 ,
3
4 ], we did not really have to deal with the infection spreading from

vertices of degree above d0 = cλ−
1

2−2α � λ−2: such vertices were labelled red there, and the
probability of their ever becoming infected was already small for the purposes of our upper
bound. For the present case α ∈ (3

4 , 1), however, the event that the root has a neighbor of
degree around λ−2, and infects this neighbor, has probability of larger order than what we
hope to achieve with our union bound. Hence, we need to include this event in our proof,
and go further by saying that even if it happens, the infection has small chance of surviving
thereafter. To do so, we need to develop tools to argue that the infection does not travel far
even if it starts from a vertex whose degree is around λ−2; around these vertices, multiple
re-infections are likely to occur.

We fix a rooted graph (G = (V,E), o), and consider the contact process (ξt)t≥0 on G started
from ξ0 = {o} (in all that follows, this initial configuration will be assumed). Given a vertex u ∈
V , we say that (ξt) is thin on u in the event that there is no infection path g : [0, t]→ V for
some t ≥ 0 with g(0) = o and such that u appears more than once in the ordered trace of g.
We say that (ξt) is thin on a set V ′ ⊆ V in the event that (ξt) is thin on every vertex of V ′.

Lemma 5.4. If V0 ⊆ V is finite, then on the event that (ξt) is thin on (V0)c, it almost surely
dies out, that is, almost surely there is t ≥ 0 such that ξt = ∅.

Proof. For t ≥ 0, let Et be the event that ξt 6= ∅ and the ordered trace γg of any infection
path g : [0, s] → V with g(0) = o and s ≤ t visits each vertex of (V0)c at most once. Using
the finiteness of V0, and making a finite number of prescriptions on Poisson processes on the
graphical construction, it is easy to see that P(Et+1) ≤ σ(λ, V0) · P(Et) for some σ(λ, V0) < 1
(it suffices for example to extend an existing infection path g : [0, t]→ V by imposing that in
the time interval (t, t+ 1), it reaches some u ∈ (V0)c, then from there jumps to a neighbour
of u, then to u again). We then have

P (ξt 6= ∅ ∀t, (ξt) is thin on (V0)c) = lim
t→∞

P(Et) = 0.

Before stating the next result, we will need to define some subsets of Γ∞. We fix a set A ⊆ V
with o /∈ A, and define

ΓkA :=


(γ(0), . . . , γ(k)) ∈ Γ∞ : γ(0) = o,

γ(0), . . . , γ(k − 1) are distinct and not in A,

γ(k) ∈ A

 , k ≥ 1

ΓkA,∗ :=


(γ(0), . . . , γ(k)) ∈ Γ∞ : γ(0) = o,

γ(0), . . . , γ(k − 1) are distinct and not in A,

γ(k) ∈ {γ(0), . . . , γ(k − 1)}

 , k ≥ 3,

ΓA := ∪k≥1 ΓkA, ΓA,∗ = ∪k≥3 ΓkA,∗. (5.2)
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The role of A will become clear in the sequel, but the intuition is that in the hyperbolic graph
setting A is a set of dangerous vertices (typically vertices above a certain height and thus of
high degree) whose infection should rather be avoided, as otherwise the infection goes on for
too long. Nevertheless, the following lemma holds in a more general setup:

Lemma 5.5. There exists c > 0 such that, for any λ < 1
2 , the following holds. Let G, o,A be

as above, and let (ξt)t≥0 be the contact process with parameter λ on G with ξ0 = {o}. Then,

P (ξt 6= ∅ ∀t ≥ 0) ≤ exp{cλ2 deg(o)}
T

+ T
∑

γ∈ΓA∪ΓA,∗

(2λ)|γ| for all T > 0.

Proof. Let S denote the star graph with vertex set {o}∪{x : x ∼ o} and edge set {{o, x} : x ∼ o}
(we will also denote the vertex set of this graph by S). We assume given a graphical construction
for the contact process (ξt) with rate λ on G; using this same graphical construction, we
define (ηt) as the contact process on S with η0 = {o}.
Fix T > 0. Let τ = inf{t : ηt = ∅} and define the event Eo := {τ ≥ T}. For each
finite γ = (γ(0), . . . , γ(k)) ∈ Γ∞, let ET,γ denote the event that there exist t < T and an
infection path starting at (o, t) and having ordered trace γ. Finally, define τ ′ as the first time
when either a vertex of A becomes infected, or an infection path g : [0, τ ′]→ V can be formed
with g(0) = o and so that some vertex v /∈ S is in the ordered trace of g twice.

Claim 5.6. We have that

{τ ′ <∞} ⊆ Eo ∪
⋃

γ∈ΓA∪ΓA,∗

ET,γ . (5.3)

Proof of Claim 5.6. Assume that τ ′ <∞. Then, we can take an infection path g : [0, τ ′]→ V
with g(0) = o and so that either g(τ ′) ∈ A or the ordered trace of g contains some vertex v /∈ S
more than once. We consider three cases:

• If τ ′ ≥ T and during the whole time interval [0, T ], g only occupies vertices of S, and
only traverses edges of S, then Eo occurs.

• If τ ′ < T and during the whole time interval [0, τ ′], g only occupies vertices of S, and
only traverses edges of S (which can only happen if g(τ ′) ∈ S ∩A), then the event ET,γ
occurs for γ = (o, g(τ ′)).

• If neither of the previous two situations holds, then we let s be the first time at which g
traverses an edge that is not in S; note that s ≤ T , g(s−) is a vertex of S, and g(s)
may or may not be a vertex of S. Then, ET,γ occurs for the vertex path γ defined by
setting γ(0) = o, γ(1) = g(s−), γ(2) = g(s), and the rest of γ given by the subsequent
vertices visited by g in order, stopping when either there is a repetition or A is reached.

We now complete the proof of the lemma by using the claim and bounding the probabilities
of the events on the right-hand side of (5.3). It is known that there exists c > 0 such
that E[τ ] ≤ exp{cλ2deg(o)} (see Theorem 1.4 in [25] and the observation that follows it).
Using this and Markov’s inequality,

P(Eo) ≤
exp{cλ2 deg(o)}

T
.
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Next, fix γ = (γ(0), . . . , γ(k)) ∈ ΓA ∪ ΓA,∗. Let us first observe that, for any t, the prob-
ability that there is an infection path starting at (γ(1), t) and from there visiting the ver-
tices (γ(2), . . . , γ(k)) in order is smaller than (2λ)k−1, by Lemma 5.1. Hence, letting X denote
the set of times t ≤ T at which there is a transmission arrow from (o, t) to (γ(1), t), a union
bound gives P(ET,γ |X ) ≤ |X | · (2λ)k−1. Taking expectations on both sides of this inequality,
we obtain:

P(ET,γ) ≤ (2λ)k−1 · E[|X |] = T · λk.

Hence, by a union bound over all γ, the probability that a vertex of A ever becomes infected,
or that a vertex outside S appears more than once in the ordered trace of an infection path
started from (o, 0), is at most

exp{cλ2 deg(o)}
T

+ T
∑

γ∈ΓA∪ΓA,∗

(2λ)|γ|.

If none of these things happen, then (ξt) is thing outside S. The conclusion now follows from
Lemma 5.4.

We now come back to the hyperbolic setup. Given u = (xu, hu), v = (xv, hv) ∈ H with |xu −
xv| ≤ exp {(hu + hv)/2}, let Gu,v denote the graph obtained from G∞ by artificially including
vertices at u and v. We root this graph at u. We define

h? := H

(
1

λ2

)
(5.4)

and
A := {w = (xw, hw) ∈ Gu,v : hw ≥ h?},

and the sets of vertex paths ΓA and ΓA,∗ as in (5.2). We then have:

Lemma 5.7. There exists ε0 > 0 such that for any δ > 0 and for λ small enough (depending
on δ), the following holds. Abbreviate

h′′ := H

(
δ

λ2
log

(
1

λ

))
. (5.5)

If u has height hu ≤ h′′ and v has height hv ≤ h?, then

E

 ∑
γ∈ΓA∪ΓA,∗

(2λ)|γ|

 < λε0 .

We will give the proof of this lemma later; for now, we state and prove:

Proposition 5.8. There exist δ, ε > 0 such that the following holds for λ small enough.
Let u = (xu, hu), v = (xv, hv) be as above, and further assume that

hu ≤ h′′, hv ≤ h?. (5.6)

Let (ξt) denote the contact process with parameter λ on Gu,v and ξ0 = {u}. Then,

P (ξt 6= ∅ ∀t ≥ 0) ≤ λε.
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Proof. We let δ = ε0
8c , where ε0 is the constant of Lemma 5.7, and c is the constant of Lemma 5.5.

Also let T = λ−ε0/2. Then, by Lemma 5.5,

P(ξt 6= ∅ ∀t ≥ 0 | Gu,v)

≤ 1

{
deg(u) >

2δ

λ2
log

(
1

λ

)}
+

exp{cλ2 · 2δ
λ2

log
(

1
λ

)
}

T
+ T

∑
γ∈ΓA∪ΓA,∗

(2λ)|γ|

= 1

{
deg(u) >

2δ

λ2
log

(
1

λ

)}
+ λε0/4 + λ−ε0/2 ·

∑
γ∈ΓA∪ΓA,∗

(2λ)|γ|.

Taking expectations and using Lemma 5.7 then gives

P(ξt 6= ∅ ∀t ≥ 0) ≤ P
(

deg(u) >
2δ

λ2
log

(
1

λ

))
+ λε0/4 + λε0/2.

Note that deg(u)− 1 ∼ Poisson(D(hu)) and by (5.6) we have

D(hu) ≤ D
(
H

(
δ

λ2
log

(
1

λ

)))
=

δ

λ2
log

(
1

λ

)
.

Using a Chernoff bound, it is easy to see that there exists c̄ > 0 such that

P
(

deg(u) > 2
δ

λ2
log

(
1

λ

))
≤ exp

{
−c̄ · δ

λ2
log

(
1

λ

)}
� λ,

if λ is small. We then have, for λ small,

P(ξt 6= ∅ ∀t ≥ 0) ≤ λ+ λε0/4 + λε0/2,

so the result follows by taking ε = ε0/5.

Proof of Lemma 5.7. We fix ε0 > 0, whose value will be chosen later, let δ > 0 be arbitrary,
and assume u = (xu, hu) has hu ≤ h′′, with h′′ defined as in (5.5). Recall that ΓkA = {γ ∈ ΓA :

|γ| = k} for k ≥ 1 and ΓkA,∗ = {γ ∈ ΓA,∗ : |γ| = k} for k ≥ 3. We further let Γ̂kA be the set of

vertex paths in ΓkA that do not visit v, and similarly define Γ̂kA,∗.

We bound, for k ≥ 1, using the multivariate Mecke formula (see [31, Theorem 4.4]) and
Lemma 5.1,

(2λ)k · E[|Γ̂kA|] ≤ (2λ)k
∫
h(1)<h?

· · ·
∫
h(k−1)<h?

∫
h(k)≥h?

dh(k) · · · dh(1)

exp

{
hu
2

+ (1− α)(h(1) + · · ·+ h(k−1)) +

(
1

2
− α

)
h(k)

}
= (2λ)k · Ck · exp

{
hu
2

+

(
(1− α)(k − 1) +

1

2
− α

)
h?

}
,

(Recall that the value of C = C(α) may change from line to line, but it will never depend on
λ). Recalling that hu ≤ h′′ = H

(
δ
λ2

log
(

1
λ

))
, h? = H

(
λ−2

)
and (5.1), we see that the above

is smaller than

(2λ)kCk
1

λ2
log

(
1

λ

)(
1

λ

)4((1−α)(k−1)+ 1
2
−α)

= Ck log

(
1

λ

)
λ(4α−3)k.
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Hence,
∞∑
k=1

(2λ)k · E
[
|Γ̂kA|

]
≤ C · log

(
1

λ

)
· λ4α−3 < λε̃ (5.7)

for some ε̃ > 0 and λ small enough, since 4α− 3 > 0.

Next, for k ≥ 3, again by the multivariate Mecke formula,

(2λ)k · E[|Γ̂kA,∗|] ≤ (2λ)k · k
∫
h(1)<h?

· · ·
∫
h(k−1)<h?

dh(k−1) · · · dh(1)

exp

{
hu
2

+ (1− α)(h(1) + · · ·+ h(k−2)) +

(
1

2
− α

)
h(k−1)

}

≤ (2λ)k · k · Ck · 1

λ2
log

(
1

λ

)
·
(

1

λ

)4(1−α)(k−2)

= k · Ck · log

(
1

λ

)
· λ(4α−3)k−8α+6.

Then,
∞∑
k=3

(2λ)k · E
[
|Γ̂kA,∗|

]
≤ C · log

(
1

λ

)
· λ(4α−3)·3−8α+6 < λε̃ (5.8)

for some ε̃ > 0 and λ small enough, since the exponent of λ in the middle term is 4α− 3 > 0.

The bounds carried out above, yielding (5.7) and (5.8), can be repeated for the sets of vertex
paths ΓkA\Γ̂kA and ΓkA,∗\Γ̂kA,∗, with no significant differences, except that one of the integrals
involved in each of the bounds is suppressed to account for a visit to v. We omit the details
for brevity. The result now follows by taking ε0 < ε̃ and λ small.

Bounds on infection paths through low vertices

We let (G∞, o) be the random hyperbolic graph on H with uniformly chosen root, and (ξt)t≥0

the contact process with rate λ on this graph with ξ0 = {o}.
Our next goal is to prove:

Proposition 5.9. There exists ε1 > 0 and σ > 0 such that the following holds for λ small
enough. Abbreviate

h′ := H

(
1

λ2−σ

)
. (5.9)

Let Ē be the event that: for every infection path g which starts at o at time zero, and from
there jumps to a vertex v = (xv, hv) with hv ≤ h′, we have that g is finite and never visits a
vertex with height above h′. Then,

P(Ē) ≥ 1− λ4α−1+ε1 .

Before proving this result, we need to give some definitions, and state and prove a lemma. We
continue abbreviating h? = H

(
1
λ2

)
. We leave σ ∈ (0, 1) fixed for now, with h′ as in (5.9) and

we define the random vertex set

A = Aσ := {v = (xv, hv) ∈ G∞ : v 6= o, hv ≥ h′}.

Next, define ΓA = ΓA(G∞, o) and ΓA,∗ = ΓA,∗(G∞, o) as in (5.2); also let

Γ̃A := ΓA\Γ1
A = ∪k≥2 ΓkA

and
Γ0 = {(o, u, o, v) : u, v ∼ o}.
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Lemma 5.10. Assume σ ∈ (0, 1). If no infection path g with g(0) = o has γg ∈ Γ0∪ Γ̃A∪ΓA,∗,
then the event Ē of Proposition 5.9 occurs: any infection path g with g(0) = o and γg(1) /∈ A
is finite and never enters A.

Proof. Assume that the realization H of the graphical construction of the contact process is
such that no infection path started at o at time zero has ordered trace in Γ0 ∪ Γ̃A ∪ΓA,∗. Then,
it is readily seen that, for any infection path g (starting from time zero),

if g(0) = o, γg(1) /∈ A, then g does not intersect A, (5.10)

and also

if g(0) = o, γg(1) /∈ A, then no u 6= o appears in γg more than once. (5.11)

(indeed, if an infection path g : [0, t]→ G∞ with g(0) = o and γg(1) /∈ A violated either property,
we could obtain s ≤ t so that the restriction g̃ of g to [0, s] would have γg̃ ∈ Γ0 ∪ Γ̃A ∪ ΓA,∗).

Now, let H ′ denote the graphical construction obtained by removing from H all Poisson
processes associated to vertices of A, and edges that intersect A. Then, (5.10) implies that
the set of H-infection paths g with g(0) = o, γg(1) /∈ A is equal to the set of H ′-infection
paths g with g(0) = o. Moreover, (5.11) implies that the contact process (ξ′t)t≥0 obtained
from H ′ and ξ′0 = {o} is thin outside o, so by Lemma 5.4, this process dies out. In particular,
any H ′-infection path g with g(0) = o is finite.

Proof of Proposition 5.9. Recalling that ho denotes the height of the root o, we start by
bounding

P(Ēc) ≤ P(ho > h′) + P(Ēc ∩ {ho ≤ h′})

≤ P(ho > h′) + E

1{ho ≤ h′} · ∑
γ∈Γ0∪Γ̃A∪ΓA,∗

(2λ)|γ|

 , (5.12)

where the second inequality follows from Lemmas 5.1 and 5.10. We will bound the terms on
the right-hand side separately. We start with

P(ho > h′) =

∫ ∞
h′

αe−αho dho
(5.1),(5.9)

≤ C

(
1

λ

)−2(2−σ)α

< λ4α−1+ε1 (5.13)

for σ > 0 and ε1 > 0 small enough, and then λ small enough.

Next, we bound (again using the multivariate Mecke formula):

(2λ)3 · E
[
|Γ0| · 1{ho ≤ h′}

]
≤ (2λ)3

∫ h′

0
α

∫ ∞
0

∫ ∞
0

dhodh
(1)dh(2) exp

{
(1− α)ho +

(
1

2
− α

)
(h(1) + h(2))

}
≤ λ3 · C · exp

{
(1− α)h′

}
≤ C · λ3−2(2−σ)(1−α).

Now, since
3− 2(2− σ)(1− α) > 3− 2 · 2 · (1− α) = 4α− 1,

we obtain
(2λ)3 · E

[
|Γ0| · 1{ho ≤ h′}

]
< λ4α−1+ε1 (5.14)

for some ε1 > 0 and λ small enough.
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We now bound, for k ≥ 2, one more time using the multivariate Mecke formula,

(2λ)k · E
[
|ΓkA|

]
= (2λ)k

∫ ∞
0

∫
h(1)<h′

· · ·
∫
h(k−1)<h′

∫
h(k)≥h′

dh(k) · · · dh(1)dho

α exp

{
(1− α)(h(1) + · · ·+ h(k−1)) +

(
1

2
− α

)
(ho + h(k))

}

≤ λk · Ck+1 · exp

{(
(1− α)(k − 1) +

1

2
− α

)
h′
}

≤ Ck+1 · λk−2(2−σ)[(1−α)(k−1)+ 1
2
−α].

Thus, if σ is small,

∞∑
k=2

(2λ)k · E
[
|ΓkA|

]
≤ C · λ2−2(2−σ)[(1−α)(2−1)+ 1

2
−α] < λ4α−1+ε1 , (5.15)

where for the last inequality we assumed that ε1 > 0 is small enough depending on α,
and σ = σ(ε) is small enough. Indeed, this can be accomplished, since if we had σ = 0, then
the exponent of λ in the middle term would be 8α − 4, which is strictly larger than 4α − 1
when α > 3

4 ; by continuity, this strict inequality still holds for small σ > 0.

The last term we have to treat is, for k ≥ 3 (again using the multivariate Mecke formula)

(2λ)k · E
[
|ΓkA,∗|

]
≤ (2λ)k · k

∫ ∞
0

∫
h(1)<h′

· · ·
∫
h(k−1)<h′

dh(k−1) · · · dh(1)dho

α exp

{(
1

2
− α

)
(ho + h(k−1)) + (1− α)(h(1) + · · ·+ h(k−2))

}
≤ λk · Ck · exp

{
(k − 2)(1− α)h′

}
≤ Ck · λk−2(2−σ)(1−α)(k−2).

Then,
∞∑
k=3

(2λ)k · E
[
|ΓkA,∗|

]
≤ C · λ3−2(2−σ)(1−α)(3−2) < λ4α−1+ε1 (5.16)

for small ε1 > 0: if we had σ = 0, then the exponent of λ in the middle term would be
precisely 4α− 1, and moreover this exponent is increasing in σ.

The proof is now completed by using the bounds (5.13), (5.14), (5.15) and (5.16) back in (5.12).

We are now prepared to finish the proof of Proposition 5.3.

Proof of Proposition 5.3. We recall the definition of h?, h
′′ and h′ in (5.4), (5.5) and (5.9).

We now give several additional definitions. We let

N = {v = (xv, hv) ∈ G∞ : v ∼ o, hv ≥ h′}, N = |N |.

On the event {N = 1}, we define û = (xû, hû) as the unique element of N . Next, let M
denote the number of transmission arrows that appear from o to vertices of N before the first
recovery mark at o. On the event {N = 1, M ≥ 1}, define τ as the first time a transmission
arrow occurs from o to û. Further define, on {N = 1, M ≥ 1}, the process (ηt)t≥τ as the
contact process on G∞ started from time τ , with a single infection at û; this process is defined
with the same graphical construction as that of the original process on G∞. In other terms,
recalling the notation from Section 2.2, we set

ηt(v) = 1 {(û, τ) (v, t)} , v ∈ G∞, t ≥ τ.
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Lastly, we define the event

Ê := {N = 1, M = 1, ηt 6= ∅ for all t ≥ τ}.

Recall the definition of the event Ē in Proposition 5.9. We now claim that, if neither of the
four events

(Ē)c, {N ≥ 2, M ≥ 1}, {N = 1, M ≥ 2}, Ê (5.17)

occurs, then ξt = ∅ for some t. To prove this, we first observe that, by the definition of Ē, on
the event Ē ∩ {M = 0} we have that every infection path started at o at time zero is finite,
and hence (ξt) dies out. Having this in mind, if neither of the four events in (5.17) occur, the
only remaining situation in which we need to rule out the survival of (ξt) is when N = M = 1
and (ηt)t≥τ dies out: this is the area painted blue in Figure 2. In that case we can argue as
follows: given an infection path g started at o at time zero, if we have γg(1) 6= û then g is
finite (because Ē occurs), and if γg(1) = û, then the jump from o to û must be through the
only transmission arrow from o to û before the first recovery at o; then, the rest of g is an
infection path available to (ηt), so it is finite since (ηt) dies out.

Figure 2: The four bad events defined in (5.17) are painted grey. In the regions painted white
and blue, the contact process dies out.

Hence, the proof of the upper bound will be complete once we show that the four events
in (5.17) have probability smaller than C λ4α−1

log(1/λ)2α−1 , for some C > 0. For (Ē)c, this is already

given by Proposition 5.9. We proceed to bound the other ones in order.

• Probability of {N ≥ 2, M ≥ 1}. We bound

P(N ≥ 2, M ≥ 1) = E
[

λN

1 + λN
· 1{N ≥ 2}

]
≤ λ · E[N · 1{N ≥ 2}]. (5.18)

The law of N conditioned on ho is Poisson with parameter

e
ho
2

∫ ∞
h′

exp

{(
1

2
− α

)
h

}
dh ≤ C · e

ho
2 · λ(2−σ)(2α−1), (5.19)

so we can bound

E[E[N · 1{N ≥ 2} | ho] · 1{ho ≥ H(1/λ)}] ≤ E[E[N | ho] · 1{ho ≥ H(1/λ)}]

≤ C ·
∫ ∞
H(1/λ)

e−αho ·
(
e
ho
2 · λ(2−σ)(2α−1)

)
dho ≤ C · λ(3−σ)(2α−1).
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Next, when ho < H(1/λ) the expression on the right-hand side of (5.19) is smaller than C ·
λ(2−σ)(2α−1)−1 � 1 if σ is small (and λ is small), since α > 3

4 . We then use the bound,
for Z ∼ Poisson(β) and β small,

E[Z · 1{Z ≥ 2}] = E[Z]− E[Z · 1{Z = 1}] = β − βe−β ≤ β2

to obtain

E[E[N · 1{N ≥ 2} | ho] · 1{ho < H(1/λ)}]

≤ C ·
∫ H(1/λ)

0
e−αho ·

(
e
ho
2 · λ(2−σ)(2α−1)

)2
dho

= C · λ(2−σ)(4α−2)−2(1−α).

Now the expression on the right-hand side of (5.18) is smaller than

C ·
(
λ(3−σ)(2α−1)+1 + λ(2−σ)(4α−2)−2(1−α)+1

)
.

If we had σ = 0, the exponents of λ inside the parentheses would be 6α− 2 and 10α− 5, both
of which are larger than 4α− 1 when α > 3

4 . This shows that

P(N ≥ 2, M ≥ 1) ≤ λ4α−1+ε′

for some ε′ > 0, if σ is small enough (and λ is small).

• Probability of {N = 1, M ≥ 2}. This is easier to handle. We first have (by the multivariate
Mecke formula)

P(N = 1) ≤
∫ ∞

0

∫ ∞
h′

exp

{(
1

2
− α

)
(ho + h)

}
dhdho

≤ C · exp

{(
1

2
− α

)
h′
}

= C · λ(2−σ)(2α−1).

(5.20)

Then, we bound

P(N = 1, M ≥ 2) =

(
λ

1 + λ

)2

· P(N = 1)
(5.20)

≤ C · λ2+2(2−σ)(α− 1
2

) < λ4α− 1
2

if σ is small enough, and then λ is small enough.

• Probability of Ê. We start with

P(Ê) ≤ P(ho > h?) + P(N = 1, M ≥ 1, hû > h′′)

+ P
(
N = 1, M ≥ 1, ho ≤ h?, hû ≤ h′′, (ηt)t≥τ survives

)
.

The first two terms can be handled with some more calculations of integrals:

P(ho > h?) ≤ C · exp{−αh?} < C · λ4α,

as in (5.13), and

P(N = 1, M ≥ 1, hû > h′′)

≤ λ

1 + λ
·
∫ ∞

0

∫ ∞
h′′

α exp

{
−
(
α+

1

2

)
(ho + h)

}
dhdho ≤ C ·

λ4α−1

log(1/λ)2α−1
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(this is the only term in the proof whose bound is at the sharp value). Next,

P
(
N = 1, M ≥ 1, ho ≤ h?, hû ≤ h′′, (ηt)t≥τ survives

)
≤ λ

1 + λ
· E
[
P ((ηt)t≥τ survives | o, û) · 1{N = 1, ho ≤ h?, hû ≤ h′′}

]
. (5.21)

On the event {N = 1, ho ≤ h?, hû ≤ h′′}, conditioned on the respective locations v and u of the
vertices o and û, the graph G∞ is stochastically smaller than the graph Gu,v of Proposition 5.8.
Indeed, the conditioning gives no information on the graph apart from the locations of these
two vertices o, û, and some negative information about the presence of other vertices in the
region {(x, h) ∈ H : |x− xo| ≤ exp{(ho + h)/2}}. Hence, Proposition 5.8 gives

P ((ηt)t≥τ survives | o, û) ≤ λε on {N = 1, ho ≤ h?, hû ≤ h′′}.

Then, (5.21) is smaller than

λ1+ε · P(N = 1)
(5.20)

≤ λ(2−σ)(2α−1)+1+ε.

If σ is small enough (depending on ε), this is smaller than λ4α−1+ε/2 for λ small enough, and
the proof of Proposition 5.3 is finished.

6 Convergence of density

We prove here Theorem 1.4, that is the convergence in probability of the empirical density of
infected sites to γ(λ). We start with the upper bound.

Lemma 6.1. Let (tn)n≥1 be any sequence with tn →∞. Then, for any ε > 0, and any λ > 0,

lim
n→∞

P

(
|ξGn
tn |
|Gn|

> γ(λ) + ε

)
= 0.

Proof. Observe first that for any R > 0, almost surely,

P(ξρs 6= ∅, ξρs ⊆ B∞(ρ,R) for all s > 0) = 0.

Using the fact that (Gn)n≥1 uniformly rooted, converges locally to (G∞, ρ) by Lemma 2.2,
this yields for any sequence (tn)n≥0, with tn →∞, and any fixed R > 0,

lim
n→∞

E

[
1

|Gn|
∑
v∈Gn

1{ξvtn 6= ∅, ξvs ⊆ Bn(v,R) for all s ≤ tn}

]
= 0. (6.1)

We thus have by self-duality of the contact process (recall (2.1)),

P

(
|ξGn
tn |
|Gn|

> γ(λ) + ε

)
= P

(
1

|Gn|
∑
v∈Gn

1{ξvtn 6= ∅} > γ(λ) + ε

)
(6.1)

≤ P

(
1

|Gn|
∑
v∈Gn

1{ξvtn 6= ∅,∃s ≤ tn : ξvs * Bn(v,R)} > γ(λ) +
3ε

4

)
+ o(1)

≤ P
(
Xn > γ(λ) +

3ε

4

)
+ o(1), (6.2)
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with

Xn :=
1

|Gn|
∑
v∈Gn

1{∃s > 0 : ξvs * Bn(v,R)}.

We will then apply Chebyshev’s inequality in order to bound the probability on the right-hand
side of (6.2). For this we need bounds on the expectation and variance of Xn. Concerning the
expectation, observe that almost surely,⋂

R>0

{∃s > 0 : ξρs * B∞(ρ,R)} ⊆ {ξρs 6= ∅ ∀s > 0}.

Indeed, if the process does not escape to infinity in finite time, then this is true by definition,
and if it does, then in particular infinitely many vertices get infected, which in turn almost
surely maintain the process alive for an infinite amount of time (just because for any t > 0,
almost surely at least one of them survives for a time larger than t). Therefore for any ε > 0,
there exists R > 0, such that

P(∃s > 0 : ξρs * B∞(ρ,R)) ≤ γ(λ) + ε/4. (6.3)

Fix now ε > 0, and then R > 0 as above. Using again that (Gn)n≥1 uniformly rooted converges
locally to (G∞, ρ), we deduce that

lim
n→∞

E [Xn] = P(∃s > 0 : ξρs * B∞(ρ,R)). (6.4)

Then (6.3) and (6.4) show that for the above choice of R, for n large enough,

E[Xn] ≤ γ(λ) +
ε

2
. (6.5)

We move now to the variance of Xn. We first notice that |Gn| ∼ n, in probability. Indeed
by definition |Gn| is a Poisson random variable with parameter µ(Rn), where we recall
Rn = [−π

2n,
π
2n]× [0, 2 log n], and from the definition of µ, one can easily verify that µ(Rn) ∼ n.

We next subdivide Rn into a disjoint union of small cubes (Bi,j)i,j of side length one. More
precisely, for i ∈ Z and j ∈ N, we set Bi,j := [i, i+ 1]× [j, j + 1]. Then let

Zi,j :=
∑

v∈Gn∩Bi,j

1{∃s > 0 : ξvs * Bn(v,R)},

and

X̃n :=
1

n

∑
i,j

Zi,j .

Due to the above discussion it suffices to show that for some constant C > 0, for any ε > 0,

P(X̃n − E[X̃n] ≥ ε/5) ≤ Cε.

Let now hε > 0 sufficiently large, be such that

µ([−π
2
n,
π

2
n]× [hε, 2 log n]) ≤ ε2.

Noting that one can bound Zi,j by |Gn ∩Bi,j |, whose mean is exactly µ(Bi,j), we get using
Markov’s inequality

P

 ∑
(i,j) : j≥hε

Zi,j ≥
ε

10

 ≤ 10ε.
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Thus all we need to show in fact is that

P(Xε
n − E[Xε

n] ≥ ε

10
) = o(1), with Xε

n :=
1

n

∑
(i,j) : j≤hε

Zi,j . (6.6)

To this end, we estimate the variance of Xε
n. Note that for any pairs of indices (i, j) and (k, `),

conditionally on Gn, Zi,j and Zk,` are independent, unless Bk,` intersects the ball of radius
2R centered at some vertex of Bi,j . Moreover, in the latter case, one can use again the trivial
bound

|Cov(Zi,j , Zk,`)| ≤ |Gn ∩Bi,j | · |Gn ∩Bk,`|,

yielding

var(Xε
n) ≤ 1

n2

∑
(i,j) : j≤hε

E
[
|Gn ∩Bi,j | · |Gn ∩ (∪v∈Gn∩Bi,jBn(v, 2R+ 1)|

]
≤ C

n2

∑
(i,j) : j≤hε

µ(Bi,j) = O(
1

n
),

where C = C(R, ε) = 1 + 2µ(Bn((0, hε + 1), 2R + 1)), is a constant that only depends on R
and ε. Then (6.6) follows and this concludes the proof of the lemma.

We prove now the lower bound, which is a bit more delicate.

Proposition 6.2. Let (tn)n≥1 be any sequence with tn →∞ and tn < ecn for each n, with c
as in Theorem 1.2. Then, for any ε > 0 and λ > 0,

lim
n→∞

P

(
|ξGn
tn |
|Gn|

< γ(λ)− ε

)
= 0.

Proof. Fix ε > 0. Using that for any R > 0, one has

P(ξρs ⊆ B∞(ρ,R), for all s > 0) = 0,

we deduce as in the proof of the previous lemma, that for any sequence (tn)n≥1, with tn →∞,

P

(
|ξGn
tn |
|Gn|

< γ(λ)− ε

)
≤ P

(
1

|Gn|
∑
v∈Gn

1{ξvtn 6= ∅, ∃s > 0 : ξvs * Bn(v,R)} < γ(λ)− 3ε

4

)
+o(1).

Moreover, as before, for any ε > 0, there exists R > 0, such that

P (∃s > 0 : ξρs * B∞(ρ,R)) ≥ γ(λ)− ε

4
.

Then, using the same argument as in the proof of the previous lemma, we get

lim
n→∞

P

(
1

|Gn|
∑
v∈Gn

1{∃s > 0 : ξvs * Bn(v,R)} ≤ γ(λ)− ε

2

)
= 0.

Thus,

P

(
|ξGn
tn |
|Gn|

< γ(λ)− ε

)
≤ P

(
1

|Gn|
∑
v∈Gn

1{ξvtn = ∅,∃s > 0 : ξvs * Bn(v,R)} > ε

4

)
+ o(1).

(6.7)
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We proceed now as in the previous lemma, but this time we only need a first moment bound.
Recall the notation for Bi,j , from there, and let

Yn :=
1

n

∑
i,j

1(Ei,j) · |Gn ∩Bi,j |,

where
Ei,j := {∃v ∈ Gn ∩Bi,j : ξvtn = ∅ and ∃s > 0 with ξvs * Bn(v,R)}.

We claim that when R is large enough, one has almost surely,

P (Ei,j | Gn ∩Bi,j) ≤ ε2. (6.8)

Note that given this fact we deduce that for some constant C > 0,

E[Yn] ≤ Cε2,

and together with Markov’s inequality, we get that the first term on the right-hand side of
(6.7) is O(ε), from which the proposition follows.

Let us prove now (6.8). The basic idea is quite simple: each time the process reaches a new
shell Bn(v, i + 1) \ Bn(v, i), it has some positive probability to infect a vertex at some high
level, which will then sustain the infection for a time tn with high probability, as was shown in
the proof of Theorem 1.2. If R is taken large enough, then the process will have many chances
to do this, and thus it should happen with probability as close to one as wanted.

We proceed now with the details which require a certain care due to the hyperbolic shape of
the balls. Define h`, for each ` ≥ 1, by

µ([0, 2`]× [h`,∞)) =
ε3

2`2
,

or equivalently by

h` =
1

α
((`+ 1) log 2− 3 log ε+ 2 log `).

Note that by Markov’s inequality, for each ` ≥ 1,

P(Gn ∩ [0, 2`]× [h`, 2 log n] 6= ∅) ≤ E
[
|Gn ∩ [0, 2`]× [h`, 2 log n]|

]
≤ ε3

2`2
.

Thus, letting

x` := x0 +
∑̀
m=1

2m, and D` := [x`, x`+1]× [h`+1, 2 log n],

a union bound gives

P (An(v)) ≥ 1− ε3, where An(v) := {Gn ∩ (∪`≥0D`) = ∅}. (6.9)

Let L := α+1
2α · log 2, be as in Section 3, and then for ` ≥ 0, set

Q(`) := [x`, x`+1]× [(`+ 2)L, (`+ 3)L].

Note the important property of these boxes, which is that any vertex in Gn∩Q(`) is a neighbor
of any other vertex in Gn ∩Q(`+ 1), for any ` ≥ 0 (this follows from the fact that L > log 2).
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We call Cn(v) the event when all these boxes are good in the sense of Section 3, at least for `
large enough. That is, we define

Cn(v) := {|Gn ∩Q(`)| ≥ C0λ
−3 for all ` ≥ `0},

where C0 is a positive constant to be fixed later, and `0 is the smallest integer such that

P(Cn(v)) ≥ 1− ε3. (6.10)

Observe that for any 0 ≤ ` ≤ m, one has (xm, hm) and (x`, h`) are neighbors in Gn, only if
m ≤ `

2α−1 + C logm, for some constant C > 0. In particular, since α > 1/2, for any fixed `,
this happens only for finitely many integers m ≥ `, and one can thus define inductively the
sequence (`i)i≥0, by `0 = 0, and for i ≥ 0,

`i+1 = inf{m > `i : (xm′ , hm′) /∈ Bn((x`i+1, h`i+1), 1) ∀m′ ≥ m}.

Consider now (ξvt )t≥0 the contact process starting from only v infected, and define:

Hn(v) := {∃s ≥ 0 : ξvs ∩ (∪`≥`0Q(`)) 6= ∅}.

The proof of Theorem 1.2 given in Section 3 shows that (at least by taking C0 large enough)

P(Cn(v) ∩Hn(v) ∩ {ξvtn = ∅}) ≤ ε3.

Therefore, recalling (6.9) and (6.10), we see that all we need to show is that for R large enough,

P(Hn(v)c ∩ An(v) ∩ {∃s > 0 : ξvs * B+
n (v,R)}) ≤ ε3, (6.11)

where B+
n (v,R) := Bn(v,R) ∪

(
[−π

2n, x0]× [0, 2 log n] ∩Gn

)
. Indeed, this would show that,

for ε small enough,

P({∃s > 0 : ξvs * B+
n (v,R)} ∩ {ξvtn = ∅}) ≤ 3ε3 ≤ ε2,

and as explained previously this would conclude the proof of the proposition.

We prove now (6.11). For i ≥ 0, we define the stopping time

τi := inf{s > 0 : ∃w = (x, h) ∈ ξvs , with x ≥ x`2i}.

Note that when the rectangles D` are empty, then the first coordinate of the vertex which is
infected at time τi cannot be larger than x`2i+2

. Otherwise there would exist m ≥ `2i+2, such
that (xm, hm) would be in the neighborhood of (x`2i , h`2i), and this is not possible by definition
of the sequence (`j)j≥0. In other words, for any i ≥ 0, on the event An(v)∩ {τi <∞}, one has
τi < τi+1.

We then consider the good events

A1
i := {|Gn ∩ [x`2i , x`2i + 2j ]× [jL, (j + 1)L]| ≥ λ−3 for all `0 ≤ j ≤ `2i + 1},

and
A2
i := {Gn ∩ [x`2i , x`2i + 2j ]× [jL, (j + 1)L] 6= ∅ for all 0 ≤ j ≤ `0},

and set
Ai := A1

i ∩A2
i .

We next define Bi, as the event that τi is finite and that after this time, there exists an infection
path within the rectangle [x`2i−1+1, x`2i+1

]× [0, 2 log n], going from the vertex infected at time
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τi up to a vertex in Q(`2i). We also need to consider truncated versions of An(v), defined for
any i, by

Ain(v) := {Gn ∩ (∪`≤`2i+2
D`) = ∅}.

We finally consider the filtration (Gi)i≥0, where Gi is the σ-field generated by this set Ain(v),
the restriction of the graph Gn to the rectangle [x0, x`2i+1

]× [0, 2 log n], together with all the
Poisson clocks associated to the vertices in this rectangle, as well as all those associated to the
edges between them in the Harris construction. Note that by definition Ai is Gi-measurable.
Note also that by definition of the (`j)j≥0, the event Ai−1

n (v) ∩ Bi is Gi-measurable as well,
since on Ai−1

n (v), the vertex infected at time τi has a first coordinate smaller than x`2i+1
.

Moreover, by definition
Bi ⊆ Hn(v), for all i ≥ 1,

and therefore for any integer r ≥ 1,

Hn(v)c ⊆
⋂
i≤r

Bc
i . (6.12)

On the other hand, a straightforward computation shows that there exists a constant p1 > 0,
independent of i, such that almost surely,

P(Ai | Gi−1) = P(Ai) ≥ p1,

using for the first equality that Ai is independent of Gi−1, by definition.

Now we claim that on the event Ai ∩ Ai−1
n (v) ∩ {τi <∞}, the vertex infected at time τi, or

the one who infected it, has a neighbor (possibly itself) in one of the boxes occurring in the
definition of A1

i or A2
i . Indeed, let vi = (xi, hi) be the vertex infected at time τi and v′i = (x′i, h

′
i)

be the one who infected it. By definition one has xi ≥ x`2i , and x′i < x`2i . Since vi and v′i
are neighbors, one also has |xi − x′i| ≤ e(hi+h

′
i)/2. Assume first that hi ≥ h′i, and let j ≥ 0 be

such that jL ≤ hi < (j + 1)L. Note that one can assume xi > x`2i + 2j , as otherwise there is
nothing to prove (since in this case vi already belongs to one of the boxes appearing in the
definition of A1

i and A2
i ). Now by definition on the event Ai there exists v′′i = (x′′i , h

′′
i ) ∈ Gn,

such that x`2i ≤ x′′i ≤ x`2i + 2j+1, and (j + 1)L ≤ h′′i ≤ (j + 2)L. Note that one has either
x′i < x′′i ≤ xi, or 0 ≤ x′′i − xi ≤ 2j < xi − x′i. Hence, in all cases it holds

|x′′i − xi| ≤ |xi − x′i| ≤ e(hi+h
′
i)/2 ≤ e(hi+h

′′
i )/2,

and thus vi and v′′i are neighbors, which proves our claim when hi ≥ h′i. If on the other hand
hi ≤ h′i, then we can use a similar argument: assume jL ≤ hi < (j + 1)L, for some j ≥ 0, and
again that xi > x`2i + 2j , as otherwise there is nothing to prove. Pick a vertex v′′i = (x′′i , h

′′
i ) in

Gn ∩ [x`2i , x`2i + 2j+1]× [(j + 1)L, (j + 2)L]. If xi > x′′i , then

|x′i − x′′i | ≤ |x′i − xi| ≤ e(hi+h
′
i)/2 ≤ e(h′i+h

′′
i )/2,

which implies that v′i and v′′i are neighbors. If xi < x′′i , then

|xi − x′′i | ≤ 2j ≤ ejL ≤ e(hi+h
′′
i )/2,

using for the second inequality that L > log 2, since 1+α
2α > 1, for any α < 1. This proves the

claim in the case hi ≥ h′i as well.

It follows that after time τi, the vertex vi will infect another vertex in one of the cubes occurring
in the definition of A1

i or A2
i , with probability at least (λ/(1 + λ))2. Once infected it will

propagate the infection up to Q(`i) within the boxes appearing in the definition of A1
i and A2

i
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with positive probability, uniformly bounded from below by a constant independent of i (this
last point following from the same argument as in the proof of Theorem 1.2). Therefore, there
also exists a constant p2 ∈ (0, 1), such that on Ai−1

n (v),

P(Ai ∩Bc
i ∩ {τi <∞} | Gi−1) ≤ p1p2.

As a consequence, there exists p ∈ (0, 1), such that on Ai−1
n (v), one has

P(Bc
i ∩ {τi <∞} | Gi−1) ≤ 1− p, for all i ≥ 1. (6.13)

The conclusion follows: indeed, let first r be some integer such that (1− p)r ≤ ε3/2, and note
that for R large enough,

{∃s > 0 : ξvs * Bn(v,R)} ⊆ {τr <∞} ∪ {τ−r <∞},

where we denote by τ−r the first time when there is an infected vertex with x-coordinate
smaller than −x`2r . By symmetry we can consider only the event {τr <∞}, but then (6.13)
and an immediate induction give

P (An(v), τr <∞, ∩i≤rBc
i ) ≤ ε3/2,

from which (6.11) follows using also (6.12). This concludes the proof of the proposition.

7 Discussion and outlook

In this paper we gave a complete picture of metastability for 1
2 < α < 1. Naturally, one might

wonder how the contact process evolves outside this regime: on the one hand, for α < 1
2 , the

total number of edges of Gn is superlinear, and hence, we do not expect metastability in this
case (and there is no natural infinite graph either); a similar phenomenon could also arise in
the case α = 1

2 . On the other hand, for α > 1, the largest component is of order n1/(2α) �
√
n,

roughly corresponding to the maximum degree (see [18]). Therefore, this component is roughly
like a star, with a few extra edges. The same proof given therein can be used to show that
most other components are star-like, and there should be of the order n1−2αβ such star-like
components of size nβ for any 0 < β ≤ 1/(2α). Hence, the expected component size in the

infinite graph is of order
∫ 1/(2α)
β=0 n2−2αdβ, which is finite for α > 1. Thus, the component of

the root is almost surely finite, and the contact process cannnot survive. For α = 1, for ν
sufficiently large (see [22]) there exists a giant component, and the study of the contact process
in this regime is subject to further work.
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