Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium - Archive ouverte HAL
Article Dans Une Revue Mediterranean Journal of Mathematics Année : 2021

Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium

Résumé

In this paper we study the stationary incompressible power law fluid flow in a thin porous medium. The media under consideration is a bounded perforated 3D domain confined between two parallel plates, where the distance between the plates is very small. The perforation consists in an array solid cylinders, which connect the plates in perpendicular direction, distributed periodically with diameters of small size compared to the period. For a specific choice of the thickness of the domain, we found that the homogenization of the power law Stokes system results a lower-dimensional nonlinear Brinkman type law.
Fichier principal
Vignette du fichier
Anguiano_SuarezGrau.pdf (559.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02902211 , version 1 (18-07-2020)
hal-02902211 , version 2 (19-01-2024)

Identifiants

Citer

María Anguiano, Francisco J. Suárez-Grau. Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium. Mediterranean Journal of Mathematics, 2021, 18 (175), ⟨10.1007/s00009-021-01814-5⟩. ⟨hal-02902211v2⟩

Collections

TDS-MACS
351 Consultations
148 Téléchargements

Altmetric

Partager

More