Independence versus Indetermination: basis of two canonical clustering criteria - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Independence versus Indetermination: basis of two canonical clustering criteria

Résumé

This paper aims at comparing two coupling approaches as basic layers for building clustering criteria, suited for modularizing and clustering very large networks. We briefly use "optimal transport theory" as a starting point, and a way as well, to derive two canonical couplings: "statistical independence" and "logical indetermination". A symmetric list of properties is provided and notably the so called "Monge’s properties", applied to contingency matrices, and justifying the $\otimes$ versus $\oplus$ notation. A study is proposed, highlighting "logical indetermination", because it is, by far, lesser known. Eventually we estimate the average difference between both couplings as the key explanation of their usually close results in network clustering.
Fichier principal
Vignette du fichier
article.pdf (367 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02901167 , version 1 (16-07-2020)
hal-02901167 , version 2 (17-03-2021)
hal-02901167 , version 3 (04-11-2021)

Identifiants

Citer

Pierre Jean-Claude Robert Bertrand, Michel Broniatowski, Jean-François Marcotorchino. Independence versus Indetermination: basis of two canonical clustering criteria. 2020. ⟨hal-02901167v2⟩
355 Consultations
170 Téléchargements

Altmetric

Partager

More