Neutron spectroscopy on protein solutions employing backscattering with an increased energy range - Archive ouverte HAL
Article Dans Une Revue Physica B: Condensed Matter Année : 2019

Neutron spectroscopy on protein solutions employing backscattering with an increased energy range

Christian Beck
Markus Appel
Marco Grimaldo
  • Fonction : Auteur
Felix Roosen-Runge
Tilo Seydel

Résumé

Novel cold neutron backscattering spectrometers contribute substantially to the understanding of the diffusive dynamics of proteins in dense aqueous suspensions. Such suspensions are fundamentally interesting for instance in terms of the so-called macromolecular crowding, protein cluster formation, gelation, and self-assembly. Notably, backscattering spectrometers with the highest flux can simultaneously access the center-of-mass diffusion of the proteins and the superimposed internal molecular diffusive motions. The nearly complete absence of protein-protein collisions on the accessible nanosecond observation time scale even in dense protein suspensions implies that neutron backscattering accesses the so-called short-time limit for the center-of-mass diffusion. This limit is particularly interesting in terms of a theoretical understanding by concepts from colloid physics. Here we briefly review recent progress in studying protein dynamics achieved with the latest generation of backscattering spectrometers. We illustrate this progress by the first data from a protein solution using the backscattering-and-time-of-flight option BATS on IN16B at the ILL and we outline future perspectives.
Fichier principal
Vignette du fichier
QENSWINS2018proceedings_BSA_BATS.pdf (427.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02896073 , version 1 (10-07-2020)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Christian Beck, Markus Appel, Marco Grimaldo, Felix Roosen-Runge, Fajun Zhang, et al.. Neutron spectroscopy on protein solutions employing backscattering with an increased energy range. Physica B: Condensed Matter, 2019, 562, pp.31-35. ⟨10.1016/j.physb.2018.11.058⟩. ⟨hal-02896073⟩

Collections

ANR
30 Consultations
110 Téléchargements

Altmetric

Partager

More