Investigation of Switch Designs for the Dynamic Load Current Multiplier Scheme on the SPHINX Microsecond Linear Transformer Driver - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Investigation of Switch Designs for the Dynamic Load Current Multiplier Scheme on the SPHINX Microsecond Linear Transformer Driver

Résumé

SPHINX is a microsecond linear transformer driver LTD, used essentially for implosion of Z-pinch loads in direct drive mode. It can deliver a 6-MA current pulse within 800 ns into a Z-pinch load. The dynamic load current multiplier concept enables the current pulse to be modified by increasing its amplitude while reducing its rise time before being delivered to the load. This compact system is made up of concentric electrodes (autotransformer), a dynamic flux extruder (cylindrical wire array), a vacuum convolute (eight postholes), and a vacuum closing switch, which is the key component of the system. Several different schemes are investigated for designing a vacuum switch suitable for operating the dynamic load current multiplier on the SPHINX generator for various applications, including isentropic compression experiments and Z-pinch radiation effects studies. In particular, the design of a compact vacuum surface switch and a multichannel vacuum switch, located upstream of the load are studied. Electrostatic simulations supporting the switch designs are presented along with test bed experiments. Initial results from shots on the SPHINX driver are also presented.
Fichier non déposé

Dates et versions

hal-02894189 , version 1 (08-07-2020)

Identifiants

Citer

Thomas Maysonnave, Frédéric Bayol, Gauthier Demol, Thierry d'Almeida, Francis Lassalle, et al.. Investigation of Switch Designs for the Dynamic Load Current Multiplier Scheme on the SPHINX Microsecond Linear Transformer Driver. IEEE International Pulsed Power Conference, Jun 2013, San Francisco, California, United States. pp.2974-2980, ⟨10.1109/TPS.2014.2313372⟩. ⟨hal-02894189⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More