Underwater exploration by AUV using deep neural network implemented on FPGA - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Underwater exploration by AUV using deep neural network implemented on FPGA

Tanguy Le Pennec
  • Fonction : Auteur
  • PersonId : 1074383
Maher Jridi
Catherine Dezan
Franck Florin
  • Fonction : Auteur
  • PersonId : 874262
Ayman Alfalou

Résumé

Performing underwater exploration with Autonomous Underwater Vehicles (AUV) requires low power and high resolution techniques. New computer vision techniques can be used for underwater image classification on embedded devices. These techniques must face machine resource constraints to offer high performance and low power consumption. This paper presents how to implement a Deep Neural Network (DNN) on Field Programmable Gate Array (FPGA) to perform underwater exploration with an AUV. We introduce tools and methodology to adapt the technology to the underwater context. This paper is part of a work to create an embedded system that can fit into an AUV to perform real time analysis of the underwater environment (using video camera as main sensor) with high autonomy and endurance. This will be achieved by overcoming underwater exploration challenges as : low power consumption, high classification performance, shortage of high-quality labeled data to train algorithm.
Fichier non déposé

Dates et versions

hal-02889898 , version 1 (05-07-2020)

Identifiants

Citer

Tanguy Le Pennec, Maher Jridi, Catherine Dezan, Franck Florin, Ayman Alfalou. Underwater exploration by AUV using deep neural network implemented on FPGA. Pattern Recognition and Tracking XXXI, Apr 2020, Online Only, United States. pp.23, ⟨10.1117/12.2558606⟩. ⟨hal-02889898⟩
140 Consultations
0 Téléchargements

Altmetric

Partager

More