The Hodge realization functor on the derived category of relative motives - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

The Hodge realization functor on the derived category of relative motives

Résumé

We give, for a complex algebraic variety S, a Hodge realization functor F Hdg S from the (un-bounded) derived category of constructible motives DAc(S) over S to the (undounded) derived category D(M HM (S)) of algebraic mixed Hodge modules over S. Moreover, for f : T → S a morphism of complex quasi-projective algebraic varieties, F Hdg − commutes with the four operations f * , f * , f ! , f ! on DAc(−) and D(M HM (−)), making in particular the Hodge realization functor a morphism of 2-functor on the category of complex quasi-projective algebraic varieties which for a given S sends DAc(S) to D(M HM (S)), moreover F Hdg S commutes with tensor product. We also give an algebraic and analytic Gauss-Manin realization functor from which we obtain a base change theorem for algebraic De Rham cohomology and for all smooth morphisms a relative version of the comparaison theorem of Grothendieck between the algebraic De Rahm cohomology and the analytic De Rahm cohomology.
Fichier principal
Vignette du fichier
DMmh485er.pdf (2.86 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02888285 , version 1 (02-07-2020)
hal-02888285 , version 2 (05-07-2020)
hal-02888285 , version 3 (28-08-2020)
hal-02888285 , version 4 (20-11-2020)
hal-02888285 , version 5 (03-02-2021)
hal-02888285 , version 6 (24-02-2021)
hal-02888285 , version 7 (03-03-2021)
hal-02888285 , version 8 (18-03-2021)
hal-02888285 , version 9 (22-03-2021)
hal-02888285 , version 10 (17-01-2022)
hal-02888285 , version 11 (24-01-2022)

Identifiants

  • HAL Id : hal-02888285 , version 11

Citer

Johann Bouali. The Hodge realization functor on the derived category of relative motives. 2022. ⟨hal-02888285v11⟩
603 Consultations
153 Téléchargements

Partager

More