Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation

Résumé

This paper is devoted to the computation of various explicit constants in functional inequalities and regularity estimates for solutions of parabolic equations, which are not available from the literature. We provide new expressions and simplified proofs of the Harnack inequality and the corresponding Hölder continuity of the solution of a linear parabolic equation. We apply these results to the computation of a constructive estimate of a threshold time for the uniform convergence in relative error of the solution of the fast diffusion equation.
Fichier principal
Vignette du fichier
BDNS2020b.pdf (654.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02887013 , version 1 (03-07-2020)

Identifiants

Citer

Matteo Bonforte, Jean Dolbeault, Bruno Nazaret, Nikita Simonov. Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation. 2020. ⟨hal-02887013⟩
264 Consultations
329 Téléchargements

Altmetric

Partager

More