Partial Trace Regression and Low-Rank Kraus Decomposition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Partial Trace Regression and Low-Rank Kraus Decomposition

Hachem Kadri
Stéphane Ayache
Alain Rakotomamonjy
Liva Ralaivola

Résumé

The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems.
Fichier principal
Vignette du fichier
partialTraceRegression.pdf (911.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02885339 , version 1 (01-07-2020)
hal-02885339 , version 2 (12-08-2020)

Identifiants

Citer

Hachem Kadri, Stéphane Ayache, Riikka Huusari, Alain Rakotomamonjy, Liva Ralaivola. Partial Trace Regression and Low-Rank Kraus Decomposition. International Conference on Machine Learning, Jul 2020, Vienne, Austria. ⟨hal-02885339v1⟩
253 Consultations
172 Téléchargements

Altmetric

Partager

More