A Comparative Study of Gamma Markov Chains for Temporal Non-Negative Factorization - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2021

A Comparative Study of Gamma Markov Chains for Temporal Non-Negative Factorization

Résumé

Non-negative matrix factorization (NMF) has become a well-established class of methods for the analysis of non-negative data. In particular, a lot of effort has been devoted to probabilistic NMF, namely estimation or inference tasks in probabilistic models describing the data, based for example on Pois- son or exponential likelihoods. When dealing with time series data, several works have proposed to model the evolution of the activation coefficients as a non-negative Markov chain, most of the time in relation with the Gamma distribution, giving rise to so-called temporal NMF models. In this paper, we review four Gamma Markov chains of the NMF literature, and show that they all share the same drawback: the absence of a well-defined station- ary distribution. We then introduce a fifth process, an overlooked model of the time series literature named BGAR(1), which overcomes this limitation. These temporal NMF models are then compared in a MAP framework on a prediction task, in the context of the Poisson likelihood.
Fichier principal
Vignette du fichier
submitted.pdf (438.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02883800 , version 1 (29-06-2020)
hal-02883800 , version 2 (18-02-2021)
hal-02883800 , version 3 (01-03-2021)

Identifiants

Citer

Louis Filstroff, Olivier Gouvert, Cédric Févotte, Olivier Cappé. A Comparative Study of Gamma Markov Chains for Temporal Non-Negative Factorization. IEEE Transactions on Signal Processing, 2021, ⟨10.1109/TSP.2021.3060000⟩. ⟨hal-02883800v3⟩
274 Consultations
177 Téléchargements

Altmetric

Partager

More