Analysis of the risk associated with coastal flooding hazards A new historical extreme storm surges dataset for Dunkirk, France
Résumé
This paper aims to demonstrate the technical feasibility of a historical study devoted to French nuclear power plants (NPPs) which can be prone to extreme coastal flooding events. It has been shown in the literature that the use of historical information (HI) can significantly improve the probabilistic and statistical modeling of extreme events. There is a significant lack of historical data on coastal flooding (storms and storm surges) compared to river flooding events. To address this data scarcity and to improve the estimation of the risk associated with coastal flooding hazards, a dataset of historical storms and storm surges that hit the Nord-Pas-de-Calais region during the past five centuries was created from archival sources, examined and used in a frequency analysis (FA) in order to assess its impact on frequency estimations. This work on the Dunkirk site (representative of the Gravelines NPP) is a continuation of previous work performed on the La Rochelle site in France. Indeed, the frequency model (FM) used in the present paper had some success in the field of coastal hazards and it has been applied in previous studies to surge datasets to prevent coastal flooding in the La Rochelle region in France.In a first step, only information collected from the literature (published reports, journal papers and PhD theses) is considered. Although this first historical dataset has extended the gauged record back in time to 1897, serious questions related to the exhaustiveness of the information and about the validity of the developed FM have remained unanswered. Additional qualitative and quantitative HI was extracted in a second step from many older archival sources. This work has led to the construction of storm and coastal flooding sheets summarizing key data on each identified event. The quality control and the cross-validation of the collected information, which have been carried out systematically, indicate that it is valid and complete in regard to extreme storms and storm surges. Most of the HI collected is in good agreement with other archival sources and documentary climate reconstructions. The probabilistic and statistical analysis of a dataset containing an exceptional observation considered as an outlier (i.e., the 1953 storm surge) is significantly improved when the additional HI collected in both literature and archives is used. As the historical data tend to be extreme, the right tail of the distribution has been reinforced and the 1953 "exceptional" event does not appear as an outlier any more. This new dataset provides a valuable source of information on storm surges for future characterization of coastal hazards. © 2017 BMJ Publishing Group.All right reserved.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|