Derivative-Free Optimization over Multi-User MIMO Networks
Résumé
In wireless communication, the full potential of multiple-input multiple-output (MIMO) arrays can only be realized through optimization of their transmission parameters. Distributed solutions dedicated to that end include iterative optimization algorithms involving the computation of the gradient of a given objective function, and its dissemination among the network users. In the context of large-scale MIMO, however, computing and conveying large arrays of function derivatives across a network has a prohibitive cost to communication standards. In this paper we show that multiuser MIMO networks can be optimized without using any derivative information. With focus on the throughput maximization problem in a MIMO multiple access channel, we propose a "derivative-free" optimization methodology relying on very little feedback information: a single function query at each iteration. Our approach integrates two complementary ingredients: exponential learning (a derivative-based expression of the mirror descent algorithm with entropic regularization), and a single-function-query gradient estimation technique derived from a classic approach to derivative-free optimization.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...