Synapse at CAp 2017 NER challenge: Fasttext CRF - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Synapse at CAp 2017 NER challenge: Fasttext CRF

Résumé

We present our system for the CAp 2017 NER challenge which is about named entity recognition on French tweets. Our system leverages unsupervised learning on a larger dataset of French tweets to learn features feeding a CRF model. It was ranked first without using any gazetteer or structured external data, with an F-measure of 58.89\%. To the best of our knowledge, it is the first system to use fasttext embeddings (which include subword representations) and an embedding-based sentence representation for NER.
Fichier principal
Vignette du fichier
sileo_22176.pdf (182.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02879724 , version 1 (24-06-2020)

Identifiants

  • HAL Id : hal-02879724 , version 1

Citer

Damien Sileo, Camille Pradel, Philippe Muller, Tim van de Cruys. Synapse at CAp 2017 NER challenge: Fasttext CRF. 19e Conference francophone sur l'Apprentissage Automatique (CAp 2017), Jun 2017, Grenoble, France. pp.1-5. ⟨hal-02879724⟩
88 Consultations
140 Téléchargements

Partager

More