Toeplitz Hermitian Positive Definite Matrix Machine Learning based on Fisher Metric - Archive ouverte HAL
Chapitre D'ouvrage Année : 2019

Toeplitz Hermitian Positive Definite Matrix Machine Learning based on Fisher Metric

Frédéric Barbaresco
Marc Arnaudon
Jérémie Bigot
  • Fonction : Auteur
  • PersonId : 983710

Résumé

Here we propose a method to classify radar clutter from radar data using an unsupervised classification algorithm. The data will be represented by Positive Definite Hermitian Toeplitz matrices and clustered using the Fisher metric. Once the clustering algorithm dispose of a large radar database, new radars will be able to use the experience of other radars, which will improve their performances: learning radar clutter can be used to fix some false alarm rate created by strong echoes coming from hail, rain, waves, mountains, cities; it will also improve the detectability of slow moving targets, like drones, which can be hidden in the clutter, flying close to the landform.
Fichier principal
Vignette du fichier
GSI_2019_Yann_Cabanes.pdf (492.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02875403 , version 1 (19-06-2020)

Identifiants

Citer

Yann Cabanes, Frédéric Barbaresco, Marc Arnaudon, Jérémie Bigot. Toeplitz Hermitian Positive Definite Matrix Machine Learning based on Fisher Metric. Geometric Science of Information, pp.261-270, 2019, ⟨10.1007/978-3-030-26980-7_27⟩. ⟨hal-02875403⟩

Collections

CNRS IMB INSMI
111 Consultations
405 Téléchargements

Altmetric

Partager

More