A cautionary comment on the generation of Berkson error in epidemiological studies
Résumé
Exposure measurement error can be seen as one of the most important sources of uncertainty in studies in epidemiology. When the aim is to assess the effects of measurement error on statistical inference or to compare the performance of several methods for measurement error correction, it is indispensable to be able to generate different types of measurement error. This paper compares two approaches for the generation of Berkson error, which have recently been applied in radiation epidemiology, in their ability to generate exposure data that satisfy the properties of the Berkson model. In particular, it is shown that the use of one of the methods produces results that are not in accordance with two important properties of Berkson error. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.