Spiking Neuron Hardware-Level Fault Modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Spiking Neuron Hardware-Level Fault Modeling

Résumé

The deployment of Artificial Intelligence (AI) hardware accelerators in a variety of applications, including safety-critical ones, requires assessing their inherent reliability to hardware-level faults and developing cost-effective fault tolerance techniques. This entails performing large-scale fault simulation experiments. However, transistor-level fault simulation is prohibitive and fault simulation should be carried out at a higher abstraction level. In this work, we focus on spiking neural networks (SNNs), and we follow a bottom-up approach starting from transistor-level simulations for developing a neuron behavioral-level fault model that can be readily employed for performing behavioral-level fault simulation of deep SNNs.
Fichier principal
Vignette du fichier
PID6470993.pdf (486.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02873418 , version 1 (18-06-2020)

Identifiants

Citer

Sarah A El-Sayed, Theofilos Spyrou, Antonios Pavlidis, Engin Afacan, Luis A Camuñas-Mesa, et al.. Spiking Neuron Hardware-Level Fault Modeling. 26th IEEE International Symposium on On-Line Testing and Robust System Design, Jul 2020, Naples, Italy. ⟨10.1109/IOLTS50870.2020.9159745⟩. ⟨hal-02873418⟩
223 Consultations
360 Téléchargements

Altmetric

Partager

More