Study on epileptic seizure detection in EEG signals using largest Lyapunov exponents and logistic regression
Résumé
Seizure detection plays a central role in most aspects of epilepsy care. Understanding the complex epileptic signals system is a typical problem in electroencephalographic (EEG) signal processing. This problem requires different analysis to reveal the underlying behavior of EEG signals. An example of this is the non-linear dynamic: mathematical tools applied to biomedical problems with the purpose of extracting features or quantifying EEG data. In this work, we studied epileptic seizure detection independently in each brain rhythms from a multilevel 1D wavelet decomposition followed by the independent component analysis (ICA) representation of multivariate EEG signals. Next, the largest Lyapunov exponents (LLE) and their scaling given by its ± standard deviation are estimated in order to obtain the vectors to be used during the training and classification stage. With this information, a logistic regression classification is proposed with the aim of discriminating between seizure and non-seizure. Preliminary experiments with 99 epileptic events suggest that the proposed methodology is a powerful tool for detecting seizures in epileptic signals in terms of classification accuracy, sensitivity and specificity.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...