Strong approximation of particular one-dimensional diffusions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Strong approximation of particular one-dimensional diffusions

Résumé

This paper develops a new technique for the path approximation of one-dimensional stochastic processes, more precisely the Brownian motion and families of stochastic differential equations sharply linked to the Brownian motion (usually known as L and G-classes). We are interested here in the ε-strong approximation. We propose an explicit and easy to implement procedure that constructs jointly, the sequences of exit times and corresponding exit positions of some well chosen domains. The main results control the number of steps to cover a fixed time interval and the convergence theorems for our scheme. We combine results on Brownian exit times from time-depending domains (one-dimensional heat balls) and classical renewal theory. Numerical examples and issues are also described in order to complete the theoretical results.
Fichier principal
Vignette du fichier
Bernoulli-2-December-2020.pdf (307.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02799638 , version 1 (05-06-2020)
hal-02799638 , version 2 (14-12-2020)
hal-02799638 , version 3 (07-06-2021)
hal-02799638 , version 4 (19-09-2023)

Identifiants

Citer

Madalina Deaconu, Samuel Herrmann. Strong approximation of particular one-dimensional diffusions. 2020. ⟨hal-02799638v2⟩

Collections

IECLPS
308 Consultations
198 Téléchargements

Altmetric

Partager

More