Random forest estimation of conditional distribution functions and conditional quantiles - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2022

Random forest estimation of conditional distribution functions and conditional quantiles

Résumé

We propose a theoretical study of two realistic estimators of conditional distribution functions and conditional quantiles using random forests. The estimation process uses the bootstrap samples generated from the original dataset when constructing the forest. Bootstrap samples are reused to define the first estimator, while the second requires only the original sample, once the forest has been built. We prove that both proposed estimators of the conditional distribution functions are consistent uniformly a.s. To the best of our knowledge, it is the first proof of consistency including the bootstrap part. We also illustrate the estimation procedures on a numerical example.
Fichier principal
Vignette du fichier
Published_Cond_RF_EJS.pdf (569.55 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02733460 , version 1 (02-06-2020)
hal-02733460 , version 2 (11-06-2020)
hal-02733460 , version 3 (02-12-2021)
hal-02733460 , version 4 (29-08-2022)
hal-02733460 , version 5 (04-02-2023)

Identifiants

Citer

Kévin Elie-Dit-Cosaque, Véronique Maume-Deschamps. Random forest estimation of conditional distribution functions and conditional quantiles. Electronic Journal of Statistics , 2022, 16 (2), ⟨10.1214/22-EJS2094⟩. ⟨hal-02733460v5⟩
312 Consultations
648 Téléchargements

Altmetric

Partager

More