Practical seed-recovery for the PCG Pseudo-Random Number Generator - Archive ouverte HAL
Article Dans Une Revue IACR Transactions on Symmetric Cryptology Année : 2020

Practical seed-recovery for the PCG Pseudo-Random Number Generator

Résumé

The Permuted Congruential Generators (PCG) are popular conventional (non-cryptographic) pseudo-random generators designed in 2014. They are used by default in the NumPy scientific computing package. Even though they are not of cryptographic strength, their designer stated that predicting their output should be nevertheless be "challenging". In this article, we present a practical algorithm that recovers all the hidden parameters and reconstructs the successive internal states of the generator. This enables us to predict the next "random" numbers, and output the seeds of the generator. We have successfully executed the reconstruction algorithm using 512 bytes of challenge input; in the worst case, the process takes 20 000 CPU hours. This reconstruction algorithm makes use of cryptanalytic techniques, both symmetric and lattice-based. In particular, the most computationally expensive part is a guess-and-determine procedure that solves about 2^52 instances of the Closest Vector Problem on a very small lattice.
Fichier principal
Vignette du fichier
main.pdf (585.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02700791 , version 1 (01-06-2020)

Identifiants

Citer

Charles Bouillaguet, Florette Martinez, Julia Sauvage. Practical seed-recovery for the PCG Pseudo-Random Number Generator. IACR Transactions on Symmetric Cryptology, 2020, ⟨10.13154/tosc.v2020.i3.175-196⟩. ⟨hal-02700791⟩
1742 Consultations
4425 Téléchargements

Altmetric

Partager

More