Encapsulation of Microperoxidase-8 in MIL-101(Cr)-X Nanoparticles: Influence of Metal-Organic Framework Functionalization on Enzymatic Immobilization and Catalytic Activity
Abstract
Microperoxidase 8 (MP8) was immobilized within MIL-101(Cr) bearing terephthalate linkers with functionalized groups (-NH2 and -SO3H). A synthesis protocol for MIL-101(Cr)-SO3H that avoids the use of toxic Cr(VI) and HF was developed. The electrostatic interactions between the MP8 molecules and the MOF matrices were found to be crucial for a successful immobilization. Raman spectroscopy revealed the dispersion of the immobilized MP8 molecules in MIL-101(Cr)-X matrices as monomers without aggregation. The presence of functional groups resulted in higher amounts of immobilized MP8 in comparison to the bare MIL-101(Cr). The catalytic activity of MP8@MIL-101(Cr)-NH2 per material mass was higher than that for MP8@MIL-101(Cr). The presence of free amino groups can thus improve the immobilization efficiency, leading to a higher amount of catalytically active species and improving the subsequent catalytic activity of the heterogeneous biocatalysts. MP8@MIL(Cr)-X also successfully catalyzed the selective oxidation of thioanisole derivatives into sulfoxides.
Fichier principal
Gkaniastous_ACSAppliedNanoMater_2019_MP8-functionalizedMIL101.pdf (1.23 Mo)
Télécharger le fichier
Origin | Files produced by the author(s) |
---|