Semiclassical Evolution With Low Regularity
Résumé
We prove semiclassical estimates for the Schrödinger-von Neumann evolution with $C^{ 1,1}$ potentials and density matrices whose square root have either Wigner functions with low regularity independent of the dimension, or matrix elements between Hermite functions having long range decay. The estimates are settled in different weak topologies and apply to the N body quantum dynamics uniformly in N .
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...