Model Predictive Control Design for Linear Parameter Varying Systems: A Survey - Archive ouverte HAL
Article Dans Une Revue Annual Reviews in Control Année : 2020

Model Predictive Control Design for Linear Parameter Varying Systems: A Survey

Résumé

Motivated by the fact that many nonlinear plants can be represented through Linear Parameter Varying (LPV) embedding, and being this framework very popular for control design, this paper investigates the available Model Predictive Control (MPC) policies that can be applied for such systems. This paper reviews the available works considering LPV MPC design, ranging from the sub-optimal, simplified, yet Quadratic Programming (QP) algorithms, the tube-based tools, the set-constrained procedures, the Nonlinear Programming procedures and the robust ones; the main features of the recent research body on this topic are examined. A simulation example is given comparing some of the important techniques. Finally, some suggestions are given for future investigation threads, seeking further applicability of these methods.
Fichier principal
Vignette du fichier
AnnualReviews_LPVMPC_Rev_v2.pdf (479.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02611783 , version 1 (28-05-2020)

Identifiants

Citer

Marcelo Menezes Morato, Julio E Normey-Rico, Olivier Sename. Model Predictive Control Design for Linear Parameter Varying Systems: A Survey. Annual Reviews in Control, 2020, 49, pp.64-80. ⟨10.1016/j.arcontrol.2020.04.016⟩. ⟨hal-02611783⟩
244 Consultations
2285 Téléchargements

Altmetric

Partager

More