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Abstract

Motivated by the fact that many nonlinear plants can be represented through Linear Parameter Varying
(LPV) embedding, and being this framework very popular for control design, this paper investigates the
available Model Predictive Control (MPC) policies that can be applied for such systems. This paper reviews
the available works considering LPV MPC design, ranging from the sub-optimal, simplified, yet Quadratic
Programming (QP) algorithms, the tube-based tools, the set-constrained procedures, the Nonlinear Pro-
gramming procedures and the robust ones; the main features of the recent research body on this topic
are examined. A simulation example is given comparing some of the important techniques. Finally, some
suggestions are given for future investigation threads, seeking further applicability of these methods.

Keywords: Model Predictive Control, Linear Parameter Varying Systems, Optimization, Quadratic
Programming, Survey.

1. Introduction

Control System literature has significantly grown over the course of the last decades. Reference tracking,
output regulation, disturbance rejection, noise attenuation and other topics have been studied for various
systems, with diverse kinds of methodologies.

1.1. Model Predictive Control5

In such a way, Model Predictive Control (MPC ) has become a very well-established and widespread
technique (Camacho & Bordons, 2013), with a wide range of industrial applications, counting more than
5800 successful results in many different areas (Alamir, 2013), including processes in chemical, mechanical
and thermic systems (Feng et al., 2007). A survey of some of these industrial applications is presented in
(Qin & Badgwell, 2003).10

Sometimes named moving/sliding horizon control, the MPC concept is a straightforward method for
the optimal control of processes subject to constraints (Zhou et al., 1996; Normey-Rico & Camacho, 2007).
The basic MPC algorithm computes an optimal control action u at each discrete instant k by solving an
optimization problem, which is written in terms of a process prediction model1. The optimization cost
function is used to consider performance goals, such as reference tracking and disturbance rejection. This15

framework allows to explicitly consider the effect of input, output and state constraints in the control design
procedure, which is rather convenient. The remaining advantages of MPC design are: that it can be applied

Email addresses: marcelomnzm@gmail.com (Marcelo M. Morato), julio.normey@ufsc.br (Julio E. Normey-Rico),
olivier.sename@grenoble-inp.fr (Olivier Sename)

1Of course, nowadays MPC has also been generalized for model-free paradigms, which are often referred to as “data-driven”
or “learning” algorithms. These are not under the scope of this paper.
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to multivariable (MIMO), coupled dynamical processes; that optimality concerns are directly implied by the
design procedure itself; and that it has a systematic design methodology.

The core principle of MPC design is that a process model is needed so that the future outputs can be20

predicted. Therefore, although being indisputably useful, the original MPC algorithms (such as DMC 2 and
GPC3 algorithms) were linked to the context of processes with linear time-invariant (LTI ) models, using
impulse-response or state-space formulations.

The design of MPC for LTI plants is very well established. These algorithms are today available through
many alternative formulations and include diverse variations (feedforward capabilities, economic purposes,25

logic constraints, etc.). In (Mayne, 2014), the future promise of LTI predictive control and some of these
recent developments are discussed. Some other MPC surveys may also interest the readers: (Scattolini, 2009)
discussed application architectures, (Garriga & Soroush, 2010) surveyed the different tuning methodologies
and (Yu-Geng et al., 2013) debated the status and challenges of this control framework.

To verify that these LTI MPC algorithms ensure closed-loop asymptotic stability properties (and re-30

cursive feasibility of the optimization procedure), literature points out to two main paths, detailed in the
sequel.

The first is to rely on the use of so-called “terminal ingredients” of the optimization procedure: a terminal

offset cost V (·) is included to the optimization cost function J = V (·) +
∑Np

i=0 `(·), weighting the terminal
state variable, and a terminal constraint, defining a stable feasibility region for this terminal variable (which35

implies in a stabilizing terminal feedback controller). The idea of these terminal ingredients coupled to the
optimization dates 1988 (Keerthi & Gilbert, 1988), but was formally generalized to MPC in 1993 (Michalska
& Mayne, 1993). The terminal constraints often require long prediction horizons, which may borderline
increase the computational complexity of these algorithms. The assumptions required by these terminal
ingredients are somewhat simple, they refer to a K-class lower bound on `(·), a K-class upper bound on V (·)40

and to a Lyapunov-decreasing characteristic for V (·), which must decay along the horizon. In (Mayne et al.,
2000), a concrete overview of many results using these terminal ingredients is presented. In (Löfberg, 2012),
different tests are proposed, through these terminal ingredients, to verify recursive feasibility properties.

The second option is to use dissipativity arguments (Seiler et al., 2010). In (Heath et al., 2005), the use
of Integral Quadratic Constraints (IQC) is applied to LTI MPC. The IQCs are demonstrated under some45

sector boundary conditions. For LTI systems with uncertain parameters, the IQCs can be extended trivially
(Heath et al., 2006), while the resulting conservativeness can be addressed with Zames-Falb multipliers, see
(Heath & Wills, 2005; Heath & Li, 2010). The main characteristic of this second stability-verification path
is that they are Linear Matrix Inequality (LMI ) formulations. No terminal ingredients are necessary, which
means that online complexity and feasibility are not affected by such proofs. For the LTI case, the proofs50

are provided a priori to implementation, which is rather convenient.
The complete standard linear MPC algorithm is presented in the sequel. The linear MPC design

procedure resides in solving the following4 Quadratic Programming Problem (QP):

Problem 1.

min
U

J = min
U

Np∑
i=0

MPC Cost︷ ︸︸ ︷
` (x(k + i|k), y(k + i|k), u(k + i− 1|k)) (1)

s.t. x(k + i) = Ax(k) +Bu(k) , y(k) = Cx(k) +Du(k)︸ ︷︷ ︸
Linear System Model

, (2)

u(k + i− 1|k) ∈ U , (3)

x(k + i|k) ∈ X , (4)

y(k + i|k) ∈ Y . (5)

2Dynamic Matrix Control, as proposed by Cutler & Ramaker (1980).
3Generalized Predictive Control, as proposed by Clarke et al. (1987).
4Notation (k + i|k) is used to represent a predicted value for instant k + i, computed at instant k. For now, the presence of

disturbances is suppressed, for simplicity.
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It is implied that U = col{u(k|k) , . . . , u(k + Np − 1|k)} is the sequence of actions inside the (sliding)
prediction horizon Np. Often, a different sliding horizon is chosen for the control signal (control horizon55

Nc, with Nc < Np). As previously explained, sometimes a terminal stage cost is also minimized; the
optimization may as well include terminal constraints, i.e. x(k+Np|k) ∈ XNp

. Throughout this work, take
x ∈ Rx, u ∈ Ru and y ∈ Ry, with U , X and Y as the set contraints that define feasibility.

1.2. Nonlinear Model Predictive Control60

It seems evident that when nonlinear systems are controlled over larger operating conditions or when the
process responses heavily depend on external parameters, the original LTI MPC design method of Problem
1 must be adapted, because an LTI model cannot truly represent the controlled process.

The concept of MPC itself is not restricted to those systems with linear time-invariant models, and
has been progressively extended for systems with nonlinear dynamics. Unfortunately, including nonlinear65

model predictions and nonlinear contraints to an optimization problem is not trivial and much increases its
complexity (Allgöwer & Zheng, 2012).

Up until the late 10’s, only a few efficient nonlinear MPC (denoted hereafter as NMPC ) algorithms were
available, as reviewed in (Cannon, 2004): the majority of these algorithms were not able to be computed
in real-time for embedded applications and require excessive computational capacities. This issue is clearly70

stated by all reviews in NMPC design from then, see (Alamir, 2006; Camacho & Bordons, 2007).
To overlap the complexity of these “full-blown” NMPC procedures, many sub-optimal solutions have

been presented, such as: a) approaches that overcome the nonlinearities via linearization along the prediction
trajectory (Ayala et al., 2011); b) methods that manipulate the nature of the nonlinearities to represent them
in some specific manner (as bilinearities or sector conditions, for instance) which may reduce complexity75

(Nguyen et al., 2016); and c) algorithms that parametrize the control inputs in finite discrete possibilities,
solving a search algorithm to find the smallest J instead of the actual optimization procedure (Rathai et al.,
2018; Alamir, 2012). A brief survey on these works has been recently performed by Zhang et al. (2019).

In spite of these sub-optimal NMPC strategies, some recent solver-bases solutions have been presented
to fasten the operation of NMPC loops (Bock et al., 2007), which must be highlighted: a) the real-time80

iteration methods, such as ACADO (Houska et al., 2011; Quirynen et al., 2015), convert the NMPC problem
into a multiple-shooting discretization optimization accompanied by a generalized Gauss-Newton problem
and are able to solve some NMPC problems within a microsecond range, as detailed in (Gros et al., 2020);
b) gradient-based methods, such as GRAMPC (Richter et al., 2011; Käpernick & Graichen, 2014; Englert
et al., 2019), which convert the NMPC through augmented Lagrangians, being also quite fast; and c) some85

other tools, such as CasADi (Andersson et al., 2019) and FPGA-based NMPC s (Xu et al., 2015), but these
are not so widespread.

Remark 1. Regarding stabillity, the same procedures of LTI MPC can be followed, with some adequate
modifications to include the nonlinearities (Magni & Scattolini, 2004): the terminal ingredients are computed90

with respect to some equilibria of the nonlinear process (reference tracking steady-state) (Lazar & Spinu,
2015; Köehler et al., 2019), while the dissipativity formulations, such as the IQCs, are computed with a
restrain on the nonlinearities (such as to be sector bounded, or structurally exploited, including homotopy)
(Cisneros & Werner, 2018).

1.3. Linear Parameter Varying Systems95

In the last decade, in parallel to the growth and establishment of predictive control applications, the
Linear Parameter Varying (LPV ) system framework has become very popular to model processes with
complex dynamics (Tóth, 2010; Tóth et al., 2011b; Hoffmann & Werner, 2014).

One can say that LPV embedding is somewhere in between the nonlinear and the LTI formalisms. These
systems are linear in the state space, but nonlinear in the parameter space. Differently than in the LTI case,100

their linear state transition map depends on endenogenous/exogenous scheduling variables, denoted by ρ.
The scheduling parameters are bounded and known (their current values ρ(k) can be measured online or
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estimated) - note that their future behaviour is generally not known. Theoretical analysis of LPV system
properties, such as stability, observability, controllability, often falls into the framework of linear time-
varying systems or of nonlinear systems, which usually presents more difficulty compared to the classical105

LTI framework (Blanchini & Miani, 2003; Bokor & Balas, 2005; Szabó & Bokor, 2018).
Many nonlinear processes can be described under an LPV formalism, as long as Linear Differential

Inclusion (LDI) is respected, see (Boyd et al., 1994; Abbas et al., 2014). Consider the generic nonlinear
system below, with states x ∈ Rnx , measured outputs y ∈ Rny and control signal u ∈ Rnu :

x(k + 1) = fx(x(k), u(k)) , (6)

y(k) = fy(x(k), u(k)) .

110

Then, the LDI property enables one to generate either state-space (SS) or Input/Output (I/O) LPV
formulations for this nonlinear system. This property is as follows: for each x, y and u and every instant k,
there exists a matrix G(x, u, k) ∈ G such that:[

fx(x(k), u(k))
fy(x(k), u(k))

]
= G(x, u, k)

[
x(k)
u(k)

]
, (7)

where G ⊆ R(nx+ny)×(nx+nu).
For nonlinear systems that the LDI property holds (i.e. G(x, u, k) indeed exists), the SS and I/O LPV115

formulations can be found as detailed next. Regarding a SS formulation, Eq. (7) can be directly re-written
as:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) , (8)

y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,

ρ(k) ∈ P ,

where the scheduling parameters ρ and their respective set P derive fromG(x, u, k). In the I/O representation
case, Eq. (7) is re-casted as the following difference equation:

S :

(
Iny

+

na∑
i=1

ai(ρ(k))z−i

)
y(k) =

nb∑
j=0

bj(ρ(k))z−ju(k) , (9)

where z−1 the time-shift operator and matrices ai(·) and bi(·) derive from G(x, u, k). In this formulation,120

the states variables are no longer of importance, being embedded directly into the I/O structure itself. An
example of how a nonlinear system, respecting LDI, can be cast into SS or I/O formulations is given in
Appendix A. Note that this formulation is similar to the LTI one for MIMO GPC algorithms, when sorted
with respect to time-domain.

Indeed, in the vast majority of industrial applications regarding LPV systems, the LDI property is used125

to recast a nonlinear model into an (SS or I/O) LPV formulation (Hoffmann & Werner, 2014). In the
majority of cases, the scheduling variable is written as an endogenous function of the internal variables of
the system, such as:

ρ(k) = fρ (x(k), u(k)) ∈ P , (10)

where fρ(·) : X×U → P is possibly nonlinear and whose form and class derives from G(x, u, k). Eventually,
the scheduling variable is not taken as a function of the process variables, willingly treated as a completely130

exogenous variables, independent from the result of the signals (Shamma, 2012). In such case, G(·) is written
as a function of these exogenous signals, which yields a model that is also linear in the parameter space with
respect to the process variables, at the expense of some linearity conservativeness of the embedding.
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Remark 2. Some authors differentiate these LPV models with respect to two classes, see (Shamma, 2012):135

a) quasi-LPV models, for which the scheduling parameters are taken as a function of endogenous variables,
as in Eq. (10); and b) those for which the scheduling variables are purely exogenous. In this paper,
this kind of classification is not used, since, regarding the application of MPC, the LPV embedding of
the nonlinear system (whether performed with endogenous or exogenous scheduling parameters) is treated
equally. Anyhow, these differences are typically important for stability analysis, which is rendered as a140

nonlinear program for the first class while verified through a robust procedure for the latter category. Note
that stability analysis of nonlinear and parameter dependent MPC algorithms (which these both LPV
categories fall under) can be verified through dissipativity formulations, as proposed in (Cisneros & Werner,
2018).

1.4. MPC for LPV Systems145

The design of LPV control and observation is nowadays standard using LFT s (Casella & Lovera, 2008;
Scherer, 2001), for H2 (Wu et al., 1997) and H∞ (Mohammadpour & Scherer, 2012; Sename et al., 2013)
regulation performance objectives, as well as for tracking and rejection (Scorletti et al., 2015). But the case
is not true for predictive control applications.

Since many nonlinear systems can be represented with the LPV formalism, the study of MPC policies150

for these processes has been formally deployed by the Control Systems community in the beginning of the
00’s. Anyhow, there are still some open literature gaps to be properly researched (Bachnas et al., 2014).

The LPV framework certainly Hence the introduction has to be sharpened as it gives a picture which
might have been true 20-15 years ago, but not today

Since LPV systems retain the linearity property from inputs to outputs, it is possible to formulate155

computationally efficient design procedures for such systems (such as polytopic approaches). This means
that the drawbacks of full-blown NMPC algorithms can be avoided.

For MPC framework, it is imperiously necessary for one to be able to describe the response of the system
in the future (Np steps ahead, from the view of instant k). To use an LPV model of the system to predict
its future outputs y(k+ j|k) is a procedure that depends not solely on the future inputs u(k+ j), but also on160

the future scheduling parameters ρ(k+ j). Because of the unavailability of the future scheduling values, this
complicates the control design procedure, essentially because recursive feasibility and closed-loop stability
of this moving horizon strategy requires an MPC which is robust against all possible future scheduling
variations, as discussed Hanema et al. (2017a).

Consider that an MPC policy as in Problem 1 is applied to a process with a LPV model as in Eq. (8),165

with the vector of scheduling parameters evolving as:

Γk = col{ρ(k + 1) , ρ(k + 2) , . . . , ρ(k +Np − 1)} . (11)

For this case, with initial condition x(k) = xk, the optimizer has to internally elaborate the model constraint
(2) based on Eq. (8), which exhibits nonlinearities from the second iteration onward:{

x(k + 1|k) = A(ρ(k))xk + B(ρ(k))u(k|k) ,
y(k|k) = A(ρ(k))xk + D(ρ(k))u(k|k) .

(12)
x(k + 2|k) = A(ρ(k + 1))A(ρ(k))xk + A(ρ(k + 1))B(ρ(k))u(k|k) ,

+ B(ρ(k + 1))u(k + 1|k) ,
y(k + 1|k) = C(ρ(k + 1))A(ρ(k))xk + C(ρ(k + 1))B(ρ(k))u(k|k)

+ D(ρ(k + 1))u(k + 1|k) ,

(13)

and so forth, up to the Np-th prediction. This results, therefore, in NP version of Problem 1, which has to
be addressed by different algorithms than those for regular LTI plants, i.e. the MPC algorithm has to be170

designed specifically for LPV systems.
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1.5. Motivation, Contributions and Organization

As evidenced, the LPV toolkit certainly appears as an interesting solution to NMPC design, especially
in terms of using the proxy linear representation of the scheduling parameters to solve the control problem.
This paper is motivated by the fact the nonlinear predictive control algorithms are sometimes too complex or175

result in rather conservative performances. Therefore, this work is devoted to review and discuss the available
MPC algorithms that were specifically conceived for LPV systems, taking into account the advantages of
this LTI -alike framework. The available LPV MPC algorithms are mainly populated with robust or sub-
optimal methods, and some recent developments include fast NP solutions to the problem, which are roughly
equivalent to modern NMPC solvers such as ACADO in terms of computational performances. This paper180

contributes by analysing each of these studies and pointing out possible some open investigation threads to
enrich LPV MPC literature.

This survey is organized in a progressive fashion: the more conservative and robust design methods are
recalled first, ranging on to the less robust and even sub-optimal frameworks:

• The available robust MPC algorithms for LPV systems are reviewed in Section 2. These methods185

usually consider worst-case performances, taking into account an upper bound on the MPC cost
function due to all possible future variations of the scheduling parameter vector.

• Section 3 surveys the works that make use of robust “trajectory tubes”, which are planned offline and
guarantee convergence without having to compute the online scheduling parameter variations.

• The methods that take into account bounded scheduling parameter rates to simplify the computation of190

the worst-case performances are recalled in Section 4. Usually, these approaches yield less conservative
results than those recalled in Section 2.

• The novel Nonlinear Programming MPC methods that exploit the linear proxy representation of LPV
systems with scheduling variables taken as static functions of endogenous variables are discussed in
Section 4.195

• The available sub-optimal methods for the LPV MPC context are presented in Section 6. Generally
speaking, these methods use an LTI guess for the behaviour of the system within the next Np steps,
considering a frozen value for the scheduling parameters. They have major drawbacks (since recursivity
and feasibility is not guaranteed in many cases), while being much simpler to implement and run in
real-time. Recent advances using set-membership design to overcome the sub-optimality drawbacks of200

these works are also reviewed in this Section.

• In Section 7, a numerical example of an LPV system controlled with some of the different surveyed
MPC algorithms is presented, for illustration purposes.

• Based on the discussion raised throughout the paper, Section 8 narrows the available investigation
gaps in this field of research.205

This paper ends with general conclusions concerning MPC design for LPV systems, in Section 9.

Remark 3. The purpose of this review paper resides not only in that fact that recent LPV MPC methods
pose a competitive framework to fast NMPC algorithms (such as ACADO and GRAMPC), but because
great interest has been given to LPV MPC development over the years, which lead to a considerable210

amount of papers, with different approaches and formulations. Many of the surveyed techniques are not
necessarily (numerical or performance-wise) “better” than some of these NMPC frameworks, but they
represent altogether a different category that has grown in the literature and deserves a proper survey and
analysis.

215
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1.6. Definitions

Before formally presenting the surveyed papers, the formal definitions of Quadratic and Nonlinear Pro-
gramming Problems are presented:

Definition 1. Nonlinear Programming Problem220

Consider an arbitrary real-valued nonlinear function fc(xc). A Nonlinear Programming Problem (NP)
determines the vector xc that minimizes fc(xc) subject to gi(xc) ≤ 0, hj(xc) = 0 and xc ∈ Xc, where gi
and hj are also nonlinear.

Definition 2. Quadratic Programming Problem225

A Quadratic Programming Problem (or simply Quadratic Problem, QP) is a linearly constrained math-
ematical optimization problem of a quadratic function. A QP is a particular type of NP. The quadratic
function may be defined with respect to several variables, all of which may be subject to linear contraints.
Considering a c ∈ Rnc vector, a symmetric matrix Qc ∈ Rnc×nc , a real matrix Aineq ∈ Rmc×nc , a real
matrix Aeq ∈ Rmc×nc , a vector bineq ∈ Rmc and another vector beq ∈ Rmc , the goal of a QP is to determine230

the vector xc ∈ Rnc that minimizes a regular quadratic function of form 1
2

(
xTc Qxxc + cTxx

)
subject to

constraints Aineqxc ≤ bineq and Aeqxc = beq. The solution xc to this kind of problem is found by many
solvers seen in the literature, based on Interior Point algorithms, quadratic search, etc.

2. Robust (Worst-Case) Methods

For a start, this paper analyses the robust (worst-case) MPC methods for LPV systems. These ap-235

proaches derived from the available robust and stochastic MPC s originally designed for dynamical systems
or LTI ones under bounded disturbances; (Mayne, 2016) discusses whether literature is going in the right
direction with these robust methods and what are the barriers to overcome.

Generally speaking, robust control policies are those able to steer the system to a specified target despite
uncertainties. Robust MPC (RMPC ) methods applied for the LPV case are usually named “min-max”240

algorithms, since they ensure stability for the minimal and maximal bounds of the system trajectories
induced by the bounded scheduling parameters. Notice that if bounded parameter variations are considered,
these bounds could also be taken into account for the design procedure; methods that take advantage of
scheduling parameter variation rates are discussed in the sequel (Section 4) - for now, only works that solve
the classical min-max problem are reviewed.245

RMPC is rather consolidated; literature shows a range of works that vary according to how the opti-
mization problem is set up, how the uncertainty set is described and how the feedback is incorporated to the
optimization horizon (Veselỳ et al., 2010; Mayne et al., 2005). Again, it must be re-affirmed that the aim
of this paper is not to review all RMPC methods considered for the LTI case that could be applied for the
LPV one (considering the nonlinearities in the uncertain parameter space), but those that were conceived250

for LPV systems and evaluate the evolution of the scheduling parameters as an uncertainty constraints.
Therefore, for the case of LPV RMPC methods, the LPV system in Eq. (8) is elegantly rewritten as:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) + ξ(k) , (14)

with ρ ∈ P as the scheduling parameters and ξ(k) ∈ E as an uncertainty variable that grows along the
prediction horizon, whose uniform bounds E depend on the value of ρ(k) and on the feasibility sets X , U
and P.255

Given that the knowledge of ρ(k) is available online, LPV RMPC methods are those that use it to
compute the control matrices [A(ρ(k))B(ρ(k))] and the bounds on the uncertainty ξ(k) at each sampling
instant k. For instance, these uncertainties can be given with respect to some nominal/average ρ?:

ξ(k + j) ∈ E =
[
(A(ρ)−A(ρ?))x+ (B(ρ)−B(ρ(?))u , (A(ρ)−A(ρ?))x+ (B(ρ)−B(ρ?))u

]
,

7



where notation f and f represents the minimal and maximal bounds on an arbitrary variable f ∈ F .
Essentially, ξ(k) represents the model-process mismatch, which increases along the horizon. Then, as260

discussed in (Gesser et al., 2018), RMPC are those that guarantee feasibility and regulation for whichever
value of ξ(k+j). This means that the whole uncertainty set E must be taken into account at each optimization
procedure, which is set to find the best possible sequence of control inputs U that minimizes J for all
ξ(k + j) ∈ E . By doing so, deteriorated/conservative performances are usually yielded, because the actual
value for ξ(k+ j) may stay very far from its edges (that were taken into account for the computation of U)265

- this is the reason why RMPC is linked to a worst-case condition (a.k.a min/max).
Essentially, RMPC methods conceived for the LPV case are those that find, online with respect to

the knowledge of ρ(k), the bounds of the uncertainty set E and thus perform the optimization procedure.
Considering these methods, nowadays there are three possible application routes: i) those that find all
possible uncertainty sets offline (using, for instance, LMI formulations); ii) those that use (polyhedral,270

elipsoidal) target set techniques to parametrize E and iii) those that use dynamic output-feedback (and
input-output formulations) of the LPV model. These papers are discussed in the sequel, by category.

2.1. Algorithms with Offline Preparations

The first idea to solve the so-called robust min-max problem for nonlinear systems under LPV embedding
is to solve some semidefinite problems under LMI s prior to the actual online MPC algorithm to find the275

possible uncertainty sets and their respective worst-case upper bound and control sequence U .
This kind of LPV RMPC algorithm was firstly seen in figure (Wada et al., 2004), which adapted the LTI

algorithms originally based on quadratic stability constraints (Boyd et al., 1994; Kothare et al., 1996) to the
LPV case by using parameter-dependent Lyapunov function to find the LMI solutions from (Daafouz &
Bernussou, 2001). These LMI s have also been employed in (Cao & Lin, 2005), whose result was celebrated280

by Montagner et al. (2007) in terms of necessary and sufficient LMI conditions to compute quadratically
stabilizing controllers. Anyhow, while the parameter-dependent Lyapunov provided relaxed stability con-
dition, an increased number of LMI s and decision variables appeared. Moreover, these original min-max
algorithms yielded quite conservative closed-loop results with rather poor performances.

In paralel, the works (Casavola et al., 2003, 2006) adapt the prior LMI conditions specifically for the285

polytopic class of LPV systems, which improves the formulation and reduces the number of LMI variables.
These papers have been recently extended in (Ileš et al., 2015), which considers some flexibility to the
formulation of the set-membership constraints.

Finally, instead of using parameter-dependent Lyapunov functions, papers (Jungers et al., 2009; Bum-
roongsri, 2014) also consider the polytopic LPV case and use multiaffine Lyapunov function (which are290

also called path-dependent), improving the analysis of stability and the accuracy of the upper bound to
the quadratic performance cost J . These results have efficient online performances and can yield reason-
able results, but their major drawback is that only state-feedback is considered and the offline preparations
(through LMI s) can be quite tough to perform and set up. For industrial applications, this is usually not
very well received (Qin & Badgwell, 2003).295

2.2. Algorithms with Target Sets

Another way to solve the RMPC problem for LPV systems is to consider target sets. This kind of target
set technique is based on predicting the future behaviours of the system states x(k+ j) along the prediction
horizon Np and bounding them to a sequence of sets of similar form (polyhedral or ellipsoidal), which are
computed with respect to the worst-case/min-max condition implied by the bounds on ξ(k + j), i.e. E .300

Bounding the future state behaviour guarantees regulation, but the sequence of sets must be computed
beforehand for each possible value of the time-varying uncertainty.

The advantage of these methods is that they can easily guarantee robust stability - only some simple
assumptions regarding the formulation of the sets are required, such as dissipativity or IQC remarks. Their
major disadvantage is that, being robust and taking into account the mix-max performances, their online305

computation is quite heavy, since computing sets is not trivial and the numerical complexity increases with
the order of the system and the size of the horizon (for the polyhedral case).

Individually, the recent works are detailed:
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• Paper (Pluymers et al., 2005b) uses polyhedral invariant sets based on the possible values of ξ(k+j) and
interpolates, online, a set of different LTI MPC s to solve the problem for the LPV case, considering310

the available knowledge of ρ(k);

• More recently, in (Bumroongsri & Kheawhom, 2012b) an adapted computation of these same invariant
polyhedral sets is seen, where an offline preparation procedure is incorporated to the design, and thus
reducing the online computational effort of this LPV RMPC algorithm;

• Based on the LTI results from (Brooms et al., 2001; Cannon et al., 2001) that have polynomial315

complexity, Angeli et al. (2008) use online ellipsoidal target sets, carrying out most of the computations
offline and making use of the closed-loop predictions to improve the control performance and adapt the
sets online. This method presents reduced computational burdens and not so much conservativeness
as the other ones with polyhedral sets. The major downside is that the definition of the appropriate
parameter values for the ellipsoids are not simple.320

Note that other algorithms that use set-membership tools, but are not robust (that do not take into
account the whole E online), will be discussed in Section 6.

2.3. Dynamic Output-feedback Algorithms

There are three main reasons to investigate dynamic output-feedback RMPC algorithms: i) state-
feedback RMPC for LPV systems is rather mature (see the two previous Sections); ii) handling state325

estimation can be a separate, complex problem, since LPV observers are needed; and iii) RMPC will only
be well-received by the industry (and thus accepted for wide applications) if dynamic output-feedback tools
are available.

To assume that the system states are available during the control implementation is somewhat unreason-
able for many kinds of systems. Moreover, the need for LPV observers to estimate the states may harshly330

deteriorate closed-loop performances with respect to input disturbance rejection for active input constraints,
as discussed by Wang & Young (2006).

Considering dynamic output-feedback RMPC policies for LPV systems, two sets of works are available,
as detailed in the sequel: i) those that use input/output formulations of the LPV plant and ii) those that
use state-space models and add a state estimation error constraint to the optimization problem.335

2.3.1. Input/Output Formulation

Note that there are quite a few practical techniques to yield I/O LPV models via identification procedures
from both open-loop and closed-loop data sets (Abbas & Werner, 2009; Tóth et al., 2011a). This is supported
with several powerful identification approaches and succesful applications, refer to the review by Bachnas
et al. (2014).340

The results considering MPC for LPV systems under I/O formulation are very few. Since state variables
do not appear in I/O formulations, the MPC algorithms must ensure bounded input to bounded output
(BIBO) stabilization (instead of input-to-state). A first, preliminary results was presented in (Abbas et al.,
2015), which lacked proofs for stability for any ξ. Then, later on, the method was “robustified” to solve
the optimization procedure considering the whole E set in (Abbas et al., 2016, 2018). This recent paper345

offers a very practical solution for LPV MPC design and should be well incorporated for practical industrial
applications. The core design is based on the use of full block multipliers and LMI conditions borrowed
from Scherer (2001). The scheduling parameters are assumed to be constant along the prediction horizon
Np, which leads to fixed values for the impulse response parameters ai and bi and, then, the uncertainty set
is included into the resulting QP. In (Liu et al., 2016), a distributed MPC formulation for spatially-invariant350

interconnected I/O LPV systems.
The majority of LPV controller synthesis techniques and real-life applications have been originally

conceived for state-space frameworks, as argues (Hoffmann et al., 2014). Therefore, there are no major
drawbacks in these papers apart from defining the system in I/O formulation of Eq. (9), which is, at
least for now, rather unusual. Their RMPC strategy is designed to counteract the worst-case possible355
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uncertainties of the scheduling variable, i.e. solving the problem at each instant based on the bounded of E
as a hard constraint.

Remark 4. The stability analysis for I/O LPV models can be based on implicit image representation and
through Finsler’s Lemma, as done in (Wollnack & Werner, 2016; Wollnack et al., 2017)360

2.3.2. State-Space + Estimation Error Constraint

LPV MPC algorithms concerning the I/O formulation are very novel and a promising investigation field.
Anyhow, the majority of available output-feedback RMPC works consider state-space formulation and the
inclusion of an estimation error constraint to the QP when observers are used.

Notice that, while the output is fed back to the main controller, it must choose an optimal control policy365

u(k) = κ(y(k), ρ(k)) such that the (internally) estimated states do not deviate from a bounded limit. The
optimization procedure, since they are RMPC methods, continues to be a min-max procedure, but now
with the worst-case bounds on y instead of x.

Take x̆(k) as the difference between the actual state x(k) and the estimated state x̂(k), i.e. x̆(k) =
x(k)− x̂(k) ∈ X̆ . Problem 1 is adapted to include x̆(k) ∈ X̆ as a constraint such that the estimation error370

also becomes bounded.
This kind of algorithm with dynamic output-feedback and bounds on x̆(k) are included into the algorithm

was firstly presented in (Lee & Park, 2007). In this paper, the MPC cost function is taken as a parameter-
dependent Lyapunov cost that decreases along the horizon to induce I/O stability. Notice that the downside
of this original work is that the resulting algorithm was solved online using an LMI at each sampling instant,375

which is numerically costly.
Considering LTI processes, (Baocang et al., 2009) splits this kind of RMPC problem into two separate

procedures, with one step dedicated solely for handling the estimation error constraint via a feasible op-
timization problem, being solved after the main optimization is performed. Then, the recursive feasibility
of the main optimization is found in a much easier fashion, without having to include the estimation error380

constraint. This result was extended to the LPV case in (Ding et al., 2013) and for the polytopic case with
parametric uncertainty and bounded disturbances in (Ding & Pan, 2016). Both these latter papers present
formal stability and recursive feasibility proofs based on the terminal ingredient axioms by Mayne et al.
(2000).

Other interesting works with similar results are:385

• (Park et al., 2011; De Caigny et al., 2012), that yield quasi-min-max algorithms by simplifying some of
the constraints, using a robust state observers and repeatedly solving a convex optimization problem
based on the LMI conditions from previous literature to minimize ta worst-case upper bound of the
cost function;

• Yu et al. (2012) discuss the variation of bounds on the estimation error for the case of possibly390

asymmetric constraints and symmetric box-type constraints.

Remark 5. Note that the issue of explicit MPC for LPV systems is also to be recalled. Such methods
were were firstly introduced by Besselmann et al. (2008) and later on investigated in terms of stability and
optimality in (Besselmann et al., 2012). Some perspectives on these algorithms are discussed in (Pistikopou-
los, 2009). Their major downside is that, since the future values of the scheduling parameters are unknown,395

the explicit algorithm ensures the constraints are satisfied for all possible system trajectories, which leads
to (numerical-wise) high-demanding QPs. Some times, non-QP procedures are found, as multiparametric
programming optimization problems.

3. Tube-Based Methods

There also exist a different kind of RMPC framework that deserves special attention, due to its applica-400

bility, advantages and number of works: these are the tube-based RMPC algorithms.
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As throughly discussed in the prequel, predictive control under uncertainty leads to a feedback min-max
optimization problem, that can be tackled through dynamic programming. Due to the inherent complexity
and conservativeness of these robust min-max algorithms, literature shows a series of papers that try to
provide computationally tractable approximations of this problem for practical applications (Raković, 2015).405

Tube-based MPC (TMPC ) design is a paradigm originally conceived to reduce the numerical complexity
of the QP with respect to the min-max RMPC framework. Thereby, its main advantage is that the numerical
toughness grows well-behaved (linear behaviour, in many cases) with the size of the prediction horizon Np.
This is framework was originally conceived for the LTI case and soon generalized for LPV systems. LPV
TMPC papers are reviewed in the sequel.410

The TMPC technique firstly grew to adress the control problem of constrained linear systems subject
to additive norm-bounded disturbances, as seen in (Langson et al., 2004; Rakovic et al., 2012). Note that
are different types of possible tube parametrizations (rigid, homothetic, elastic) seen in the literature.

In an LTI setting, when applying MPC for systems subject to bounded uncertainties, the controller
should include an accurate prediction of the system variables (states or states plus dynamic outputs) along415

the prediction horizon. The mix-max procedures recalled in Section 2 assumed worst-case predictions for
these variables, bounding them with respect to the uncertainty bounds. The TMPC algorithm does not
compute the worst-case predictions, but predicts a nominal system trajectory without uncertainties and
guarantees that the deviation that the real system has from this nominal trajectory lies inside a “tube”
(which is exploited by using the bounds of the uncertainties). The trade-offs and advantages of TMPC with420

respect to min-max RMPC techniques are reviewed and quantified in Gesser et al. (2018).
Soon after the original LTI TMPC papers, TMPC was extended to nonlinear cases, as in (Mayne

et al., 2011; Santos et al., 2018), and to time-varying processes, as done in (Gonzalez et al., 2011). These
developments opened doors to a LPV TMPC formulation.

The notion of TMPC applied to the LPV is slightly different than the prior. In the aforementioned425

papers (for the LTI, LTV and nonlinear cases), persistent additive disturbances were assumed to be present
and, thus, the stabilization of the process to the origin could not be fulfilled, but some convergence to
a boundary set centered around the origin. For the LPV case, this condition can be relaxed because it
should be possible to stabilize the process to the origin since the uncertainty arises due to the scheduling
parameters, that enter in the model multiplicatively, as discusses Hanema et al. (2017a).430

LPV TMPC algorithms have an essentially similar idea of the classical TMPC papers, of building a
tube for the real trajectories (which, in the LPV case depend on future unknown scheduling variables),
and computing the predictions with a nominal trajectories (assuming the scheduling variable would remain
constant along the horizon). This is further explained: the admissible values of the scheduling variables
ρ(k + j|k) should be known for a “perfect” MPC algorithm; anyhow, a very simple mechanism can be435

used to bound these values: taking a sequence of subsets of the scheduling set P along the horizon, namely
{P}k = {{P}0|k , . . . , {P}Np−1|k}; this sequence of sets is understood as forming a tube around a “nominal”
future trajectory taken with ρ(k+j) = ρ(k) - {P}k is referred to, in the literature, as the “scheduling tube”
at time instant k. For the LPV TMPC procedure, at each instant k this scheduling tube is constructed
based on the actual bounds ρ and ρ.440

Works (Cannon et al., 2011; Fleming et al., 2014; Muñoz-Carpintero et al., 2015; Hariprasad & Bhar-
tiya, 2014) proposed TMPC design specifically for multiplicative uncertain processes. In these papers, the
scheduling parameters are not properly defined (neither measured online), which means that the context
study is more robust rather than LPV. Anyhow, the application of stabilizing TMPC for LPV systems
have appeared consequently:445

• A first paper on LPV TMPC was proposed by Su et al. (2012), where an output feedback algorithm
is proposed, whose results is slightly superior to that of a min-max technique, thereby named quasi-
min-max;

• A first framework for the development of stabilizing TMPC was presented in (Brunner et al., 2013),
where polytopic systems are considered under assigned initial condition sets. This work ensures that450

all process trajectories that depart from the initial sets are contained inside a tube which is ends in a
λ-contractive terminal set.
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• Based on the theoretical developments of Brunner et al. (2013), the recent paper (Hanema et al., 2016)
designs a novel LPV TMPC, wherein the homothetic tubes guarantee the convergence of the system
trajectories to a λ-contractive terminal set; the online QP for the feedback policy is conducted in the455

LPV vertices (the system is polytopic);

• Then, (Hanema et al., 2017a) elucidated how to properly build finite-step terminal set and stage cost
ingredients for LPV TMPC design. In this paper, it is shown that, under certain assumptions on the
parametrization of the tube, recursive feasibility can be obtained.

• Very recently, papers (Abbas et al., 2019; Hanema et al., 2020) deploy TMPC s for LPV systems with460

bounded rates of parameter variations. The first paper considers the maximal and minimal evolution
sequence for the scheduling variables for the next Np steps, considering the rates of variations, and
thus computes the tube that encompasses all these possible trajectories. The latter reference uses
heterogeneously parameterized tubes.

It must be remarked, from the above literature survey, that tube-based MPC design can be quite465

promising for the LPV case. The use of tubes abruptly reduces numerical complexity of the QP, but, if
these tubes are equivocally designed, the control performances may turn out excessively conservative. It was
discussed how TMPC for the LPV can indeed be stabilizing, and bring the process to the origin. Anyhow,
rather few works have shown practical applications and further theoretical advances are lacking. The topic
is definitely rather unexplored (or under-investigated).470

3.1. Discussion

Tube-based MPC design can be formally understood as a subset of RMPC tools, although in this paper
these algorithms were analysed as distinct/different categories. Anyhow, some words must still be spent on
how to choose whether to apply TMPC or RMPC methods:

• RMPC methods with offline preparations (LMI s) are the simplest to implement; deep theoretical475

knowledge is not necessary to develop the online algorithm or to tune the controller, even for the case
of systems with many states (i.e. large nx). The offline LMI procedures are also quite standard. In
terms of scalability, it must be remarked that the average computational time for the offline procedures
increases considerably with respect to the number of states, inputs and prediction horizon, as discusses
Gesser et al. (2018).480

• Online min-max RMPC (as with target sets) as well as TMPC algorithms, are more complex to code:
the computation of the robust invariant sets and the scheduling tubes is not trivial; the tuning of the
MPC parameters may also not be explicit. Their computational cost is simpler than computing LMI s,
although totally done online, given that state inequalities such as Ainx(k + j) ≤ bin are plugged into
the resulting QP.485

• The decision of which kind of robust MPC method is better is related to the system model (number
of states, inputs) and the size of the prediction horizon. LMI -based RMCP methods are the best
solution for smaller systems, due to implementation simplicity. Online min-max RMPC s and TMPC s
are interesting options for faster systems because of the low computation time for the QPs, despite
being harder to tune and implement. Computing the robust control invariant set might be a challenge490

for the target-based methods, while TMPC s can achieve better performances if an accurate description
for the future scheduling tube is available (such as when considering bounds on the variations of the
scheduling variables).

4. Bounded Parameter Variation Rates

This Section surveys the papers that take into account bounds on the variations of the scheduling495

parameters to simplify the predictive controller synthesis.
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Note that, for the robust MPC case discussed in the previous Sections, the surveyed algorithms had the
goal to minimize the MPC worst-case upper bound of the cost function (or the trajectory inside a scheduling
tube), defined by the boundaries of E over the prediction horizon, assuming that the scheduling parameters
could vary arbitrarily inside the description domain P.500

Nonetheless, for the great majority of real world applications, the dynamics of the scheduling parameters
vary within a given (known) rate limit; this issue is debated in (Amato & Mattei, 2001; Amato et al., 2005).
Mathematically speaking, this means that the time-varying scheduling parameters ρ also present bounds on
their rates of variations:

∂ρ(k) = [ρ(k)− ρ(k − 1)] ∈
[
∂ρ , ∂ρ

]
= Ṗ . (15)

It is reasonable to understand that if Eq. (15) is taken into account for the control design procedure, the505

bounds on the future scheduling trajectory are very easy to be found: taking a receding prediction horizon
of Np discrete-time steps, departing from k0, the two (upper and lower) trajectories for the evolutions of
the scheduling parameters are:

Γmink0 = col{ρ(k0) + ∂ρ , ρ(k0) + 2∂ρ . . . ρ(k0) + (Np − 1)∂ρ} , (16)

Γmaxk0 = col{ρ(k0) + ∂ρ , ρ(k0) + 2∂ρ . . . ρ(k0) + (Np − 1)∂ρ} . (17)

This simple consideration greatly simplifies the MPC algorithms (specially for the robust offline proce-
dures), as verified in the sequel:510

• In the case of RMPC, the paper by Jungers et al. (2011) must be highlighted, given that it uses LMI s
for offline preparations that take into account these bounds on ∂ρ(k).

• Casavola et al. (2002); Park & Jeong (2004) develop state-feedback min-max RMPC algorithm for the
case of LPV models with bounded rates of parameter variations. Their online computational stress is
smaller than papers (Pluymers et al., 2005b; Bumroongsri & Kheawhom, 2012b), for instance, because515

the upper bound of the MPC cost function J becomes easier to compute than when the parameters
are assumed to vary arbitrarily;

• Considering RMPC methods with target sets, Suzukia & Sugie (2006) use ellipsoidal target sets also
taking these bounds on ∂ρ to simplify the online computation of the sets. This work, unfortunately,
involves heavy numerical procedures, even for smaller systems. Papers (Casavola et al., 2012; Bum-520

roongsri & Kheawhom, 2012a) present a major advance in simplifying the computation of the eilip-
soildal sets online and achieving quite fast MPC algorithms when a polytopic structure of LPV model
is assumed. Yet, these works need some complementary offline procedures which are not necessarily
simple to perform;

• An extension of the explicit LPV MPC algorithm has been provided using bounded ∂ρ constraints in525

(Besselmann et al., 2009a,b). These methods are based on dynamic programming, Pólya’s Theorem
and Delaunay’s triangulation of a polytope. An alternative path for explicit MPC design is proposed
in (Li & Xi, 2010), where an iterative method is used to refine the polytope describing the possible
output, state dynamics as functions of the discrete-time instants k and the scheduling parameter
variation rate ∂ρ.530

There is also another group of works that take into account the variation rate of the scheduling parameters
for the design of predictive controllers - the papers that adapt search tree MPC algorithms for the context
of LPV systems. These methods are often referred to as “scenario”-based MPC algorithms. Some of these
robust MPC are reviewed in (Saltık et al., 2018).

The essential idea behind these methods is to compute all possible scheduling trajectories from the535

discrete instant k0. Using search algorithms to find all possible system trajectories, the MPC design is
based on minimizing the upper bound of objective function for all the possible trajectories found via the
search procedure. Using an orthogonal search tree, this control framework is fully detailed for a nonlinear
case in (Johansen & Grancharova, 2003).
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Specifically designed for the LPV case, (Calafiore & Fagiano, 2013) shows the application of this scenario540

optimization algorithm under stochastic scheduling conditions.
Note that this control framework using scenario optimization is essentially robust (RMPC ), as argued by

Calafiore & Fagiano (2012). The overview and perspectives for future research on this topic are extensively
discussed by Mesbah (2016). The downside of these methods is that the search algorithm adds a difficulty,
tree-based search is rather computationally costly. Therefore, the application of these algorithms is still not545

optimized for real-time applications.

5. Nonlinear Programming Methods

Very recently, a new branch of LPV MPC algorithms has appeared in the literature as an interesting
alternative to modern solver-based NMPC tools, such as ACADO, GRAMPC and CasADi. These algorithms550

are rapidly improving and their core is to embed nonlinear systems to an LPV representation with an
endogenous ρ(k) = fρ(x(k), u(k)) proxy, and then manipule this proxy to make the predictions along the
horizon.

Differently than dealing with the scheduling parameters via robust solutions, this NP algorithms were
firstly seen in (Cisneros et al., 2016), where an efficient formulation was presented. In this first paper, the555

scheduling parameters were iteratively guessed along the horizon, through a mechanism that iteratively re-
fined the predictions for the scheduling parameters through the nonlinear model, coming close to a sequential
QP -based solution of NMPC. In fact, the solution for the NP comes close to that of a Second-order Cone
Program.

Such method was extended and further formalized in (Cisneros & Werner, 2017a), where the refer-560

ence tracking problem was embedded to the NP formulation. In (Cisneros & Werner, 2017b), parameter-
dependent stability conditions for these algorithms were presented. Finally, an alternative stabilizing tube-
based formulation of such algorithm was seen in (Hanema et al., 2017b).

It must be remarked that this kind of algorithm represents a numerically-efficient approach to LPV MPC
through NPs, for which the nonlinear constraints are handled in an LPV fashion. The numerical results,565

in terms of average computational stress, is compared to the fast real-time iterations NMPC algorithms. It
has been recently shown (Cisneros & Werner, 2017a, 2019) that such NP LPV MPC technique is able to
outperform or achieve similar performances to both ACADO and CasADi solver-based NMPC s. In (Cisneros
et al., 2019), for the case of a pendubot stabilization, the average computational time needed to solve the
optimal nonlinear tracking control problem is of 0.265 ms with such LPV MPC, while 0.290 ms and 11.82 ms570

with the other two tools, respectively. These results are quite impressive.
Since these formulations are quite new, further guarantees in terms of recursive feasibility and stability

are still lacking. Some insights regarding a dissipativity formulation have been given in (Cisneros & Werner,
2018), but the results are not yet conclusive.

575

Remark 6. Some papers that also provide fast solutions to the LPV MPC problem without resorting to
plain sub-optimality or robust tools are: a) those that use velocity-based linearization to yield the LPV
model, instead of LDI, as in (Cisneros et al., 2018); and b) Data-driven algorithms based on velocity
linearization and truncated Koopman operators (Korda & Mezić, 2018; Arbabi et al., 2018) - such operators
can recursively updated linear model to make the predictions, solving just one QP per sampling instant k.580

6. Sub-Optimal Methods

Differently from the previously described methods, sub-optimal LPV MPC frameworks disregard the
possible values for the real evolution of the scheduling parameters inside the prediction, namely Γk, and opt
for a prediction guess Γ̂k to simplify the complex optimization problem, using simplified (LTI ) models for
the prediction of the future controlled outputs inside the horizon. This Section focuses in analysing these585

works that use such simplification approach.
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Sub-optimal LPV MPC methods can be those that schedule the nonlinear system into multiple local LTI
models, as done in (Lazar et al., 2006; Bravo & Normey-Rico, 2009), and develop the predictive controller
based on the LPV scheduling of these models (gain scheduling). This kind of technique was applied for
practical purposes (such as the control of solar and desalination plants) in (Torrico et al., 2010; Ayala et al.,590

2011). A recent survey of near-optimal control of nonlinear proceses was delivered by Zhang et al. (2019).
An one-step receding-horizon MPC -alike strategy is proposed for discrete-time LPV systems in (Nguyen

et al., 2013); for this case, as Np = 1, Γk is known and, thus, a parameter-dependent Lyapunov function can
be used to find, at each instant, the optimal solution by solving a linear QP. Anyhow, when the prediction
horizon increases, this no longer becomes feasible, since Γk is no longer known.595

To address this, a scheduling parameter trajectory guess can be used, which translates Problem 1 into a
QP. This has been done in (Morato et al., 2018), for the case of vehicle suspension systems, taken a frozen
guess ρ̂(k + j) = ρ(k) for j = 1, . . . , Np. Considering the fault-tolerant control of renewable microgrids,
the same kind of frozen guess LPV MPC algorithm has been recently applied in (Morato et al., 2020). The
same methodology is has also been recently used by Alcalá et al. (2019).600

In (Calderón et al., 2019), a benchmark comparison is given for frozen scheduling guess approaches
considering both state-space and input/output formulations. Paper (Morato et al., 2019a) uses a fixed
MPC, developed upon a fixed nominal LTI model, coupled to a feedback filter that adapts the control
policy according to the evolution of the scheduling parameters. However, the issue that resides with all
these previous works is that the results may be (very) sub-optimal (or even unstable) since the system605

trajectory might not be inside the region of attraction of the MPC, resulting in infeasibility. This means
that the recursive feasibility property of the main optimization problem is not guaranteed, and the receding
horizon implementation is only viable if the previous control solution is maintained whenever an infeasible
point occurs.

Recursive feasibility, as thoroughly discussed by Löfberg (2012), is a very important property of predictive610

control loops: the optimization problem must be feasible for all future time instants k > k0 if it is feasible
for the initial starting instant k0. Albeit sub-optimal approaches having possible worse performances, these
more relevant papers are those that guarantee recursive feasibility despite model-process mismatches due to
the model simplifications by considering a fixed evolution guess for the scheduling variables.

6.1. Set-Membership Methods615

The Set-membership MPC methods were firstly conceived based on the set-theoretical definitions de-
veloped by Blanchini (1999) (originally defined for LTI models but then extended to nonlinear and LPV
plants) of Positively Invariant Control Sets and Nr-Steps Invariant Set Sequences.

With these set-theoretical foundations, the original paper by Mayne et al. (2000) uses terminal sets
(and costs), as well as constrained system performance, and demonstrated how these tools may be used to620

guarantee recursive feasibility and stabilization to MPC algorithms. Therefore, these tools have become
extremely important for the control of uncertain systems (or nonlinear ones with linear models, etc), since
they allow controlled system to abide as close to the performance objectives (such as reference tracking,
disturbance rejection, etc) as possible, in the sense that these are obeyed whilst stability and feasibility are
maintained, as discussed in the Introduction. They have been, therefore, combined to enlarge the domain of625

attraction of MPC algorithms, finding more options of stable closed-loop equilibrium points (Limon et al.,
2005).

In (Limón et al., 2008), these tools are generalized for the case of reference tracking of LTI plants.
The framework proposed therein was then extended in (Ferramosca et al., 2008; Raimondo et al., 2007;
Ferramosca et al., 2009) and guarantees performance and feasibility of the MPC policies when applied to630

nonlinear systems. These tools are used in the LPV MPC context in many of the works surveyed in this
paper, such as (Brunner et al., 2013; Hanema et al., 2017a; Morato et al., 2019b; Mate et al., 2019). The
major inovation of these methods is to use contractive sets to make sure the LPV does not “steer” towards
an unwanted region.

To guarantee that within Nr steps from the initial instant k0 the controlled system reaches a control635

invariant set Υ which contains the target equilibrium, the following contractive terminal set constraint is
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included to the MPC design:

x(k0 +Nr) ∈ Υj , j = max{Nr − k , 0} , (18)

assuming SNr
is available from a computed sequence of control invariant sets. Note that this terminal set Υj

is equal to the larger Υ0 at the initial instant k0 being shrinked subsequently until, at k0 +Nr, it becomes
the smallest set ΥNr . Moreover, note that N is a sliding-horizon, but Nr is not, it is fixed and, gets closer640

to k as k increases. This constraint makes the MPC method intrinsically time-varying, since, at least for
the first Nr samples, the sets are contracting. Usually, Nr ≥ Np.

In (Morato et al., 2019b), an online, iterative Least-Squares identified scheduling parameter model is used
to compute Γ̂k. In this paper, a Lyapunov-decreasing terminal cost and a contractive terminal set is used
to make sure that the LPV system converges, despite the model-process mismatch and the issue of possible645

infeasibility. In (Mate et al., 2019), proofs are provided on how to develop the proper terminal ingredients
and Lyapunov-decreasing stage costs to ensure stabilization of LPV systems. Thereby, it becomes clear that
the recent advances to overcome the sub-optimality drawbacks of the previous works are ensured by the use
of set-membership design.

Remark 7. In terms of the computation of the set sequences, (Pluymers et al., 2005a) proposes an efficient650

method for polyhedral invariant sets and polytopic systems and (Bravo et al., 2005) offers their computation
for constrained nonlinear systems based on an interval arithmetic approach.

6.2. Multiple Model MPC

There is also another (final) category of works that must be commented on. These papers may take
into account the variation rate of the scheduling parameters for the design of predictive controllers (but also655

can neglect this factor). These works are those that adapt Multiple Model MPC for the context of LPV
systems. This is a rather unexplored field, with promising results, but rather few works.

Multiple Model MPC, as originally seen in (Aufderheide & Bequette, 2003), where the DMC algorithm
is extended for multiple models of a same nonlinear plant, resides in including in the QP optimization
procedure a model choosing variable µj for the prediction of the controlled variables within the next Np660

steps.
To synthetically describe these methods, take, for instance, a generic polytopic5 LPV system in Eq.

(14), that lays within the polytope Ω. Even though the exact model of the process is unknown for the next
steps, due to the unavailability of Γk for MPC design, this system can be described, for all future instants
k > k′, by a generic pair [A(ρ(k′)), B(ρ(k′))] which also belongs to the polytope Ω.665

Then, for the polytopic case, any pair [A(ρ(k)), B(ρ(k))] can be represented as a convex combination of
the polytope vertices such that:

A(ρ(k)) =

L∑
j=1

µjAj and B(ρ(k)) =

L∑
j=1

µjBj , (19)

with

L∑
j=1

µj = 1 and 0 ≤ µj ≤ 1 . (20)

For this representation, µj is a weighting variable that determines how much does each vertex (LTI
model) of the polytope represents the uncertain LPV model for the future Np steps. Then, as done recently
in (Pipino & Adam, 2019), a complementary QP can be included to the MPC design to match µj to the670

5This is just an example. Generalized formulations have been discussed for other LPV classes.
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last Nb data instants (backward horizon, for which x(i) is known, i.e. measured data). This is:

min
col{µj}

(x(i)− x̂(i))
2

(21)

s.t. x̂(i) = A(ρ(i))x(i) +B(ρ(i))u(i) i ∈ Zk−Nb:N ,

A(ρ(i)) =

L∑
j=1

µj(i)Aj , (22)

B(ρ(i)) =

L∑
j=1

µj(i)Bj , (23)

L∑
j=1

µj(i) = 1 , (24)

0 ≤ µj(i) ≤ 1 j ∈ Z1:L , (25)

x̂(i) ∈ X , ∀i ∈ Zk−Nb:k . (26)

The above QP results in a collection of µj , which are plugged into the prediction model for the original
MPC optimization, which becomes a QP.

Very similar LPV MPC algorithms like this were firstly seen in (Arkun et al., 1998). More recently, they
were re-discussed by Jin et al. (2011). This framework is also available for hybrid (Nandola & Bhartiya, 2008)675

and switched (Hariprasad et al., 2012) nonlinear systems and could be adapted for the (hybrid, switched)
LPV case. Evidently, this topic is rather under-explored. Debates on whether its effectiveness are better or
worst than the regular the previous sub-optimal tools are lacking (in terms of numerical burden, achieved
performances, etc).

680

7. An Application Example

In this Section, a simple numerical example is presented to illustrate how of the surveyed LPV MPC
tools can be applied. The aim is to synthetically present to the reader how to design and implement such
algorithms and to discuss their performances and preparation steps.

For this purpose, consider the following application example of two cascaded tanks, for which the level of685

water must be regulated. The nonlinear model of this process is cast into an SS LPV formulation through
LDI; futher details are given in Appendix A. The controller must maintain the level of the tanks x(k) as

close to a steady-state reference target xr =
[

0.45 0.45
]T

m as possible. The tanks have base areas of
Ab = 1 m2 and the system operates with a sampling period of Ts = 20 ms. State-feedback is available: both
(levels) states are measurable. Remark that the system has a single control input, which is the input flow690

of water at the top of the first tank. A step-like input disturbance signal of 0.5 m3/s is considered upon x1,
from t = 0.5 to 0.6 s.

Regarding this problem, some of the main methods from the previous survey are implemented. These
are:
• The online min/max RMPC algorithm from (Cao & Lin, 2005);695

• The online min/max RMPC algorithm considering bounded rates of parameter variation from (Li &
Xi, 2010);

• The tube-based robust algorithm (TMPC ) from (Su et al., 2012);

• The sub-optimal procedure from (Morato et al., 2019b), denote SOMPC;

• The NP design method from (Cisneros & Werner, 2017a), denoted NLMPC;700
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All these control strategies consider the same prediction horizon of Np = 15 samples and a cost function
as follows:

J = ||x(k +Np|k)− xr||2P +

 Np∑
i=0

||x(k + i|k)− xr||2Q +

Np−1∑
i=0

||u(k + i)||QR

 , (27)

for which the matricial weights are taken according to (Limón et al., 2008): Q = I2, R = 1 and

P =

[
16.98 5.52
5.52 11.51

]
.

The algorithms are implemented with respect to the guidelines presented in (Löfberg, 2003), in order
to achiever faster optimization. The implementation is performed in a 2.4 GHz Macintosh computer with705

Yalmip and Matlab softwares. The solver used for the robust techniques was MPT, while for sequential QPs
and single QPs, QuadProg. Note that recursive feasibility is guaranteed for all methods, due to the forms of
matrices P , Q and R and the use of terminal ingredients, see (Löfberg, 2012). The achieved results, which
comprise 2 s of simulation, are celebrated below:

7.1. Offline Preparations710

Firstly, it must be recalled tht the TMPC design requires some offline preparations to compute the
robust tube within which the state predictions must lie. These preparations, for the considered system,
imply in the solution three LMI s, of somewhat large dimensions (16× 16, 16× 16 and 4× 4). The solution
of such problem is found within 1.84 s using Yalmip and SDPT3 solver. The solution of the LMI s gives
a robust set parametrized over the sampling instants k. The online algorithm embeds a simple additional715

inequality constraint of type Atube(k + j)x(k + j|k) ≤ btube(k + j).

7.2. Online Computational Stress

Regarding the online part of these methods, the averge time elapsed to solve their optimization procedures
is recalled in Table 1.Note that the min/max RMPC algorithm considering bounded rates of parameter
variations from (Li & Xi, 2010) is slightly faster than the one from (Cao & Lin, 2005), since the uncertainty720

set E becomes smaller, computed on the basis of ρ(k + j) = ρ(k)± ∂ρ, with ∂ρ ∈ Ṗ.
As expected, the sub-optimal and the tube-based optimization procedures are the fastest, since they

solve simple regular QPs. The NP LPV MPC is solved through sequential QPs, with competitive results.

Table 1: Online Computational Stress

Method Average Elapsed Time (ms)

Min/max RMPC : (Cao & Lin, 2005) 16.754
Min/max RMPC : (Li & Xi, 2010) 7.973

Robust TMPC : (Su et al., 2012) 1.904

Sub-optimal LPV MPC : (Morato et al., 2019b) 1.804
NP LPV MPC : (Cisneros & Werner, 2017a) 2.908

7.3. Tracking Performances

Figure 1 shows the achieved results in terms of reference tracking. The results with the robust approches725

((Cao & Lin, 2005), (Li & Xi, 2010) and (Su et al., 2012)) are quite similiar, ensuring stabilization and
tracking. The sub-optimal method from (Morato et al., 2019b) is able to achieve more aggressive due to
the least-squares estimation used for the predictions of the scheduling parameters; the method lets go of
robustness but does not ensure, a priori, stabilization. The NP LPV MPC (Cisneros & Werner, 2017a)
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shows very interesting performances, using nonlinear (real) predictions and guaranteing optimality (and thus730

stabilization) and aggressiveness.
In terms of reference tracking performances, a root-mean-square (RMS ) index of the tracking error is

used to compile the achieved results, as exhibited in Table 2. The robust approaches are clearly more
conservative and take more time to stabilize the plant and, thus, the tracking error takes more time to
converge to zero. The best results are obtained with the NP LPV MPC, while the sub-optimal approach735

yields similar performances.
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Figure 1: State Performances and Control Signal

Table 2: Tracking Results: RMS of Tracking Error

Method Reference tracking for x1 Reference tracking for x2

Min/max RMPC : (Cao & Lin, 2005) 0.0489 0.0263
Min/max RMPC : (Li & Xi, 2010) 0.0367 0.0234

Robust TMPC : (Su et al., 2012) 0.1024 0.0989

Sub-optimal LPV MPC : (Morato et al., 2019b) 0.0258 0.0370
NP LPV MPC : (Cisneros & Werner, 2017a) 0.0229 0.0272

8. Available Investigation Gaps

Although there exist nowadays generalized formulations of MPC for nonlinear systems, the Linear Pa-
rameter Varying framework has become the most popular one for control purposes and, since the majority of
nonlinear plants can be embedded into an LPV description, the previous Sections analyzed and discussed the740

available (robust and sub-optimal) predictive control methods for processes with Linear Parameter Varying
models.

Considering the works mentioned in the presented literature review, their qualities and drawbacks, their
applicability and their impact in the Control Systems community, it becomes evident that there is still some
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vague space and available investigation threads in this context of LPV MPC design. These threads are745

mentioned in the sequel.
Firstly, it should be remarked that LPV formulation in the I/O form, although being supported by diverse

data-driven identification procedures (Tóth et al., 2011a; Bachnas et al., 2014), is not at all common. The
vast majority of available control methods for LPV systems (including predictive control design) are settled
for state-space descriptions. Anyhow, industry is much more prone to accept I/O formulations, as discusses750

Froisy (2006); just to give an example, the original GPC algorithm (Clarke et al., 1987) has wide acceptance
in many real-world applications due to its simple I/O prediction model, an issue that is discussed in (Darby
& Nikolaou, 2012). Therefore, the bridge between theory and industrial applications for the case of MPC
applied to LPV systems will be further sustained when a good body of research for I/O formulations is
well-build. This research is fundamental and a very promising investigation area, with rather few papers755

and lacking assessments.
Nonlinear Programming versions of LPV MPC algorithms that use the ρ(k) = fρ(x(k), u(k)) proxy

to make the process predictions along the horizons have been recently shown to yield very fast results.
As discussed, these algorithms have been shown to even outrank fast NMPC solvers, such as ACADO.
Anyhow, the topic has only been studied only by a handful of papers and deserves further attention,760

especially regarding recursive feasibility and stability properties. It seems that their development can surely
be established as a competitive category for nonlinear MPC.

Multiple Model MPC for the context of LPV systems is also a rather unexplored field. This type of
algorithm may fall short of the robust methods and be equivalent to sub-optimal approaches, but comparison
works to conclude on these characteristics are lacking. Nowadays, one cannot conclude if these algorithms765

are able to outperform search methods or RMPC design for the LPV case.
Robust MPC design translated to the LPV case is rather well-established (Li & Xi, 2010; Jungers et al.,

2011; Abbas et al., 2018). These min-max (worst-case) algorithms can be synthesized via offline a-prior
preparation (with LMI s), with terminal (ellipsoidal, polyhedral) target sets, for dynamic output-feedback
and for the case of bounded parameter variation rates. The major drawback of the min-max optimization is770

that quite conservative results can be obtained with heavy numerical burden. To smooth this computational
complexity, tube-based design shows itself quite promising for the LPV case. LPV TMPC is able to stabilize
LPV systems to the origin (Hanema et al., 2017a) and provide good results with simpler QPs. The major
drawback is that if the tubes are equivocally designed, the control performances may turn out excessively
conservative. Rather few works have developed stabilizing LPV TMPC algorithms and further theoretical775

advances are lacking. This is an interesting research route specially concerning practical applications, which
are yet unseen.

The prediction of the future scheduling parameter behaviour of LPV systems within the next sliding
horizon of Np steps also seems like an interesting route to follow. Possibly, one can also consider MPC
applied for “nonlinear PV models”, i.e. PV models that keep some “easily handled” nonlinearities (such780

as local Lipschitz ones). These predictions, if coupled to the regular MPC algorithm, can translate the
nonlinear programming procedure into a QP. But, this leads to sub-optimality of the control design and,
therefore, feasibility and convergence guarantees need to be combined. Formal proofs on how contractive
terminal sets and Lyapunov-decreasing stage costs for these kinds of algorithms are still to be generalized
and formally conducted for LPV systems under MPC s with badly estimated future scheduling parameter785

behaviour.
The design of Fault-tolerant control (FTC ) strategies (that can be derived from MPC loops) can be

investigated, extending what was previously seen in (Rotondo et al., 2015, 2014). To tackle FTC problems6,
as well as systems with delays is definitely under the research scope of LPV MPC procedures.

9. Conclusions790

This paper surveyed the available predictive control techniques for the case of systems with Linear
Parameter Varying models. The aim of this paper was to enhance the comprehension of the state-of-the-art

6Note that, in many situations - see (Morato et al., 2018, 2020) -, linear systems subject to faults become LPV ones.
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on the topic of LPV MPC methods, concluding on the current situation, ongoing trends and open gaps that
should be occupied. As evidenced, robust MPC methods have a wide applicability for the LPV context,
but tube-based design, I/O formulations and sub-optimal methods with guaranteed recursive feasibility795

may yield similar control performances with less numerical burden. Furthermore, Nonlinear Programming
formulations have been recently explored and achieved comparable numerical performances as ACADO,
GRAMPC and CasADi NMPC solutions.
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Abbas, H. S., Hanema, J., Tóth, R., Mohammadpour, J., & Meskin, N. (2018). A new approach to robust MPC design for
LPV systems in input-output form. IFAC-PapersOnLine, 51 , 112–117.
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Raković, S. (2015). Robust model-predictive control. Encyclopedia of Systems and Control , (pp. 1225–1233).1080

Rakovic, S. V., Kouvaritakis, B., Cannon, M., Panos, C., & Findeisen, R. (2012). Parameterized tube model predictive control.
IEEE Transactions on Automatic Control , 57 , 2746–2761.

Rathai, K. M. M., Alamir, M., Sename, O., & Tang, R. (2018). A parameterized NMPC scheme for embedded control of
semi-active suspension system. IFAC-PapersOnLine, 51 , 301–306.

Richter, S., Jones, C. N., & Morari, M. (2011). Computational complexity certification for real-time MPC with input constraints1085

based on the fast gradient method. IEEE Transactions on Automatic Control , 57 , 1391–1403.
Rotondo, D., Nejjari, F., & Puig, V. (2014). A virtual actuator and sensor approach for fault tolerant control of LPV systems.

Journal of Process Control , 24 , 203–222.
Rotondo, D., Nejjari, F., & Puig, V. (2015). Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator

faults. International Journal of Applied Mathematics and Computer Science, 25 , 7–22.1090
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Tóth, R. (2010). Modeling and identification of linear parameter-varying systems volume 403. Springer.
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Veselỳ, V., Rosinová, D., & Foltin, M. (2010). Robust model predictive control design with input constraints. ISA transactions,
49 , 114–120.

Wada, N., Saito, K., & Saeki, M. (2004). Model predictive control for linear parameter varying systems using parameter-1120

dependent lyapunov function. In 47th Midwest Symposium on Circuits and Systems (pp. iii–133). IEEE volume 3.
Wang, L., & Young, P. C. (2006). An improved structure for model predictive control using non-minimal state space realisation.

Journal of Process Control , 16 , 355–371.
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Appendix A. Linear Differential Inclusion

In this Section, an example of how a nonlinear process can be represented in either SS or I/O LPV1140

formulations is given, to facilitate the understanding of this paper.
Consider a cascade of two cylindrical water tank, with equal base areas Ab. The upper tank is flooded

by an open-valve inlet flow at its top and deflated by a regular open hole. The second tank is flooded by
the outlet of the first tank, while also having a regular open hole at its bottom. The inlet flow of water to
the upper tank is given by u(t), while its outlet flow is given by

√
2gh1(t), being h1(t) the level of the water1145

in this tank and g the gravitational constant. Equivalently, the outlet flow of the bottom tank is given by√
2gh2(t), being h2 its water level. Assume that both levels are constantly measured; the controlled output

is y = h2. The dynamics of these cascaded tanks are directly found:

Ab
dh1(t)

dt
= u(t)−

√
2g
√
h1(t) , (A.1)

Ab
dh2(t)

dt
=

√
2g
√
h1(t)−

√
2g
√
h2(t) , (A.2)

(A.3)

which, considering an Euler discretization with a Ts sampling period, being t = kTs, can be described
through:1150

h(k+1)︷ ︸︸ ︷[
h1(k + 1)
h2(k + 1)

]
= fx(h(k)) =

[
h1(k)− Ts

Ab

√
2g
√
h1(k) + Ts

Ab
u(k)

h2(k)− Ts

Ab

√
2g
√
h2(k) + Ts

Ab

√
2g
√
h1(k)

]
, (A.4)

y(k) = fy(h(k)) = h2(k) . (A.5)
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The LDI property is easily verified:

[
fx(h(k))
fy(h(k))

]
=

G(h(k))︷ ︸︸ ︷ (1− Ts
√
2g

Ab

√
h1(k)

h1(k)
) 0 Ts

Ab

(Ts
√
2g

Ab

√
h1(k)

h1(k)
) (1− Ts

√
2g

Ab

√
h2(k)

h2(k)
) 0

0 1 0

[ h(k)
u(k)

]
, (A.6)

where G(h(k)) always exists, since the discontinuity h1 = h2 = 0 is assumed to be avoided by the control
action u.

For a SS LPV formulation, it follows that ρ(k) = {ρ1(k) , ρ2(k)}, with ρ1(k) = (Ts
√
2g

Ab

√
h1(k)

h1(k)
) and

ρ2(k) = (Ts
√
2g

Ab

√
h2(k)

h2(k)
), which yields, for x(k) = h(k):1155

x(k + 1) = A(ρ(k))x(k) +Bu(k) , (A.7)

A(ρ(k)) =

[
1 0
0 1

]
+

[
−1 0
1 −1

]
diag{ρ(k)} and B =

[
Ts

A 0
]T

. (A.8)

Taking the same scheduling parameters, an I/O formulation is easily casted as:(
1 + a1(ρ(k))z−1 + a2(ρ(k))

)
y(k) = b2(ρ(k))z−2u(k) , (A.9)

a1(ρ(k)) = 2− ρ1(k)− ρ2(k) , (A.10)

a2(ρ(k)) = 1− ρ1(k)− ρ2(k) + ρ1(k)ρ2(k) , (A.11)

b2(ρ(k) =
Ts
Ab
ρ1(k) . (A.12)

This concludes the example.
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