Faraday instability on a sphere: numerical simulation - Archive ouverte HAL
Article Dans Une Revue Journal of Fluid Mechanics Année : 2019

Faraday instability on a sphere: numerical simulation

Résumé

We consider a spherical variant of the Faraday problem, in which a spherical drop is subjected to a time-periodic body force, as well as surface tension. We use a full three-dimensional parallel front-tracking code to calculate the interface motion of the parametrically forced oscillating viscous drop, as well as the velocity field inside and outside the drop. Forcing frequencies are chosen so as to excite spherical harmonic wavenumbers ranging from 1 to 6. We excite gravity waves for wavenumbers 1 and 2 and observe translational and oblate-prolate oscillation, respectively. For wavenumbers 3 to 6, we excite capillary waves and observe patterns analogous to the Platonic solids. For low viscosity, both subharmonic and harmonic responses are accessible. The patterns arising in each case are interpreted in the context of the theory of pattern formation with spherical symmetry.
Fichier principal
Vignette du fichier
1905.04485.pdf (3.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02610531 , version 1 (17-05-2020)

Identifiants

Citer

A. Ebo-Adou, L. S. Tuckerman, S. Shin, Jalel Chergui, Damir Juric. Faraday instability on a sphere: numerical simulation. Journal of Fluid Mechanics, 2019, 870, pp.433-459. ⟨10.1017/jfm.2019.252⟩. ⟨hal-02610531⟩
181 Consultations
96 Téléchargements

Altmetric

Partager

More