Vector-relation configurations and plabic graphs - Archive ouverte HAL
Article Dans Une Revue Selecta Mathematica (New Series) Année : 2024

Vector-relation configurations and plabic graphs

Résumé

We study a simple geometric model for local transformations of bipartite graphs. The state consists of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical systems including the pentagram map, Q-nets, and discrete Darboux maps. On the other hand, for plabic graphs we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the fact that Postnikov's boundary measurement map is invertible. In all cases there is a cluster algebra operating in the background, resolving the open question for Q-nets of whether such a structure exists.
Fichier principal
Vignette du fichier
Vectors and relations on bipartite graphs.pdf (400.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-02595570 , version 1 (15-05-2020)
hal-02595570 , version 2 (04-12-2023)

Licence

Identifiants

Citer

Niklas Affolter, Max Glick, Pavlo Pylyavskyy, Sanjay Ramassamy. Vector-relation configurations and plabic graphs. Selecta Mathematica (New Series), 2024, 30 (1), ⟨10.1007/s00029-023-00898-z⟩. ⟨hal-02595570v2⟩
118 Consultations
115 Téléchargements

Altmetric

Partager

More