ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS - Archive ouverte HAL
Article Dans Une Revue Israel Journal of Mathematics Année : 2014

ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS

Résumé

When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.
Fichier principal
Vignette du fichier
dense_primes_israel.pdf (353.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02572807 , version 1 (13-05-2020)

Identifiants

  • HAL Id : hal-02572807 , version 1

Citer

D S Ramana, Olivier Ramaré. ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS. Israel Journal of Mathematics, 2014, 199, pp.955-974. ⟨hal-02572807⟩
46 Consultations
90 Téléchargements

Partager

More