ADAPTIVE SAMPLING CRITERIA FOR MULTI-FIDELITY METAMODELS IN CFD-BASED SHAPE OPTIMIZATION - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

ADAPTIVE SAMPLING CRITERIA FOR MULTI-FIDELITY METAMODELS IN CFD-BASED SHAPE OPTIMIZATION

Résumé

The paper presents a study on four adaptive sampling methods of a multi-fidelity global metamodel for expensive computer simulations. The multi-fidelity approximation is built as the sum of a low-fidelity-trained metamodel and the metamodel of the difference between high-and low-fidelity simulations. The multi-fidelity metamodel is trained selecting the fidelity to sample based on the prediction uncertainty and the computational cost ratio between the high-and low-fidelity evaluations. The adaptive sampling methods are applied to the CFD-shape optimization of a NACA hydrofoil. The performance of the sampling methods is assessed in terms of convergence of the maximum uncertainty and the minimum of the function.
Fichier principal
Vignette du fichier
2018-ECFD-Pellegrini_etal.pdf (601.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02571025 , version 1 (12-05-2020)

Identifiants

  • HAL Id : hal-02571025 , version 1

Citer

Riccardo Pellegrini, Andrea Serani, Matteo Diez, Jeroen Wackers, Patrick Queutey, et al.. ADAPTIVE SAMPLING CRITERIA FOR MULTI-FIDELITY METAMODELS IN CFD-BASED SHAPE OPTIMIZATION. ECCOMAS CFD 2018, Jun 2018, Glasgow, United Kingdom. ⟨hal-02571025⟩
105 Consultations
122 Téléchargements

Partager

More