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Abstract. The paper presents a study on four adaptive sampling methods of a multi-
fidelity global metamodel for expensive computer simulations. The multi-fidelity approx-
imation is built as the sum of a low-fidelity-trained metamodel and the metamodel of
the difference between high- and low-fidelity simulations. The multi-fidelity metamodel
is trained selecting the fidelity to sample based on the prediction uncertainty and the
computational cost ratio between the high- and low-fidelity evaluations. The adaptive
sampling methods are applied to the CFD-shape optimization of a NACA hydrofoil. The
performance of the sampling methods is assessed in terms of convergence of the maximum
uncertainty and the minimum of the function.

1 INTRODUCTION

Fluid-dynamic shape design of aerial, ground, and water-borne vehicles demand the
use of high-fidelity numerical solvers with large computational grids to assess accurately
the design performance and make sound design decisions. The latter can be achieved by
combining the computational fluid dynamics (CFD) analysis with a shape/design mod-
ification tool (CAD) and a minimization algorithm into an automatic simulation-based
design optimization (SBDO). High-fidelity physics-based solvers results in computation-
ally expensive analyses. Furthermore, the optimization algorithm may require a large
number of function evaluations to converge to the final solution. Therefore, the resulting
computational cost could become very high, making SBDO unaffordable for most users
and projects for which limited computational resources and time are usually available.

In order to reduce the computational cost of the SBDO process, metamodeling methods
have been developed and successfully applied in several engineering fields [1]. Metamodel
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performance depends on several concurrent issues, such as the dimensionality of the prob-
lem, the nature (smooth or noisy) of the function, and the sampling approach [2] used
for its training. A priori sampling provides distribution of training-set points, without
any knowledge of the function. Sequential sampling adds new training points iteratively,
based on the knowledge gathered during the training process. An adaptive sampling for
dynamic stochastic radial basis functions (SRBF') has been presented in [3] and compared
to dynamic Kriging [4]. A multi-criteria adaptive sampling method for dynamic SRBF
has been presented in [5] for design optimization problems.

In addition to metamodels, multi-fidelity (or variable-fidelity) approximation methods
have been developed with the aim of combining to some extent the accuracy of high-fidelity
solvers with the computational cost of low-fidelity solvers. Combining metamodeling
methods with multi-fidelity approximations potentially leads to a further reduction of the
computational cost of the SBDO procedure. Additive and/or multiplicative correction
methods might be used to build multi-fidelity metamodels, using high- and low-fidelity
evaluations [6, 7, 9]. Several metamodels can be used with multi-fidelity data, as co-kriging
[8] and RBF [10].

The objective of the present work is the assessment of four adaptive sampling meth-
ods for multi-fidelity metamodeling. These are based on the maximum prediction un-
certainty, a multi-fidelity version of the expected improvement [11], the maximum pre-
diction uncertainty and the objective function through an aggregated merit factor, and
the multi-criteria based on the maximum prediction uncertainty and the objective func-
tion [5]. These methods are applied to the CFD-based shape optimization of a NACA
hydrofoil, addressing the drag minimization at Re = 8.41FE6. The hydrofoil hydrody-
namic performance is assessed by RANSE solver ISIS-CFD, developed at Ecole Centrale
de Nantes/CNRS and integrated in the FINE/Marine simulation suite from NUMECA
Int. Mesh deformation techniques and adaptive grid refinement techniques are adopted
to allow the automatic shape deformation of the hydrofoil. The high- and low-fidelity are
defined by the grid refinement. The performance of the adaptive sampling methods are
assessed in terms of prediction uncertainty and optimization procedure convergence.

2 MULTI-FIDELITY METAMODELING

Consider an objective function f(x), where x € R" is the design variable vector and N
the design space dimension. The multi-fidelity prediction f(x) is defined by an additive

correction to a low-fidelity trained metamodel f; (x) as

() = fr (%) +(x) (1)

where the correction is provided by the metamodel of the error ¢ (x), defined by the
difference between high- (HF) and low-fidelity (LF) evaluations (fy and f1) [9] as

e(x) = fu (x) — fr (%) (2)

The training set for f;, is denoted by £, whereas the training set for & is denoted by
E C L. “~7 indicates metamodel prediction and “A” indicates multi-fidelity approxi-
mation. Using a metamodel that gives both function prediction and its uncertainty and
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Figure 1: Adaptive multi-fidelity metamodel updating scheme
assuming the uncertainty associate to the low-fidelity and error metamodels (U 7 and Uz

respectively) as uncorrelated, the uncertainty associated to the multi-fidelity prediction
can be defined as

Uj (x) = /U2 (%) + U2 (x) (3)
2.1 Stochastic radial basis functions

The metamodel prediction f (x) is computed as the expected value (EV) over a stochas-
tic tuning parameter of the metamodel 7 ~ unif[1, 3]

J
f)=EV[g(x,7)],, with g(x,7) =) wllx—x] (4)
j=1
where w; are unknown coefficients, || - || is the Euclidean norm, x; are the training points

with associated objective function value f (x;), and J is the number of training points.
The coefficients w; are determined enforcing the interpolation g (x;,7) = f (x;) by solving
Aw = f, with w = {w;}, a;; = ||x — x;||” and £ = {f (x;)}.

The uncertainty Uy (x) associated with the metamodel prediction is quantified by the
95%-confidence interval of g(x,7), evaluated using a Monte Carlo sampling over 7 [3].

2.2 Adaptive sampling methods

New training points x* for £ and &£ are sequentially defined by the adaptive sampling
method, as shown in Fig. 1 and described in the following subsections. Once x* is
identified, the training sets £ and £ are updated as

If Uj, (x*) > BU:(x*), add {x*, fr(x*)} to L .
else, add {x*, fr(x*)} to £ and {x*,e(x*)} to & (5)

where 8 € [0, 1] is the ratio between the LF and HF computational cost. In the first case,
only a low-fidelity evaluation is performed, while the second case requires both low- and
high-fidelity evaluations for the same x*.
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2.2.1 Maximum uncertainty

The maximum uncertainty adaptive sampling (MUAS) has been presented in [9]. This
method identifies a new training point by solving the following single-objective maximiza-
tion problem

x* = argmax[U;(x)] (6)

X

2.2.2 Multi-fidelity expected improvement

Since the multi-fidelity concept is to keep the high-fidelity training set as small as
possible, the expected improvement proposed in [11] is extended here to a multi-fidelity
expected improvement (MFEI) as

MFEI (x) = EV [max (fum — ¢ (x,7),0)].,  with fum = min [ f(x)} (7)

where g (x, 7) is a stochastic multi-fidelity prediction. The MFEI is therefore the expected
value of potential reduction provided by all the SRBF with respect to the predicted
minimum, at the present iteration of the sampling process.

The MFEI adaptive sampling identifies a new training point by solving the following
single-objective maximization problem

X" = argxmax[MFEI(x)] (8)

2.2.3 Aggregate criteria

The aggregate criteria adaptive sampling (ACAS) is based on the difference between the
multi-fidelity prediction and the associated uncertainty. ACAS identifies a new training
point by solving the following single-objective minimization

~

x* = argmin[f(x) - Uj(x) (9)

2.2.4 Multi-criteria

The multi-criteria adaptive sampling (MCAS) [5] identifies Np new training points
(user defined) conditional to both multi-fidelity prediction and the associated uncertainty.
A multi-objective optimization problem addressing the minimization of the objective func-
tion and the maximization of the prediction uncertainty is solved

minimize f(x) = {f(X), —Uf(x)}T

subject to  Uz(x) > Us (10)

where U7} is a user defined parameter used to avoid overfitting in the neighborhood of

the minimum [5]. New training points are identified down-sampling the non-dominated
solution set produced by Eq. 10. Herein, U; = 0.1%R, where R is the function range of

the initial high-fidelity training set.
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2.3 Single- and multi-objective optimization algorithms

A deterministic single-objective formulation of the particle swarm optimization (DPSO)
algorithm [12], is used for the solution of the minimization/maximization problems of
Egs. 6, 8, and 9. Furthermore, it is used for the metamodel-based optimization. A
multi-objective extension of DPSO (MODPSO) [13] is used for the solution of Eq. 10.

3 NACA HYDROFOIL TEST PROBLEM

The following minimization problem is solved

minimize Cy(x)
subjectto Cj(x) = 0.6 (11)
andto 1<x<u

where Cy and Cj are respectively the drag and lift coefficient of NACA hydrofoil. 1 and u
are the lower and upper bound, respectively, of the design variable vector. The equality
constraint on the lift coefficient is necessary to compare different geometries of a lifting
hydrofoil. The hydrofoil shape is defined by the general equation for 4-digit NACA foils.
In this work, the design variables vector is defined as x = {¢,m}, with ¢ the thickness
and m the camber of the hydrofoil. The thickness ranges between ¢ € [0.03,0.12], the
camber ranges between m € [0.025,0.07], and the location of the maximum camber is
set equal to 0.4. The simulations conditions are: velocity V' = 10 m/s, chord ¢ = 1 m,
fluid density p = 1026 kg/m?, and Reynolds number Re = 8.41E6. The CFD simulations
are performed with the unstructured two-fluid finite-volume Navier-Stokes solver ISIS-
CFD developed at Ecole Centrale de Nantes/CNRS and integrated in the FINE/Marine
simulation suite from NUMECA Int.

Two evaluation metrics are used is order to evaluate the effectiveness and the effi-
ciency of the multi-fidelity adaptive sampling methods: (1) the maximum value of the
multi-fidelity metamodel uncertainty and (2) the objective function value (high-fidelity
evaluated).

The following subsections present details about the CFD analysis

3.1 Mesh deformation

The unstructured hexahedral meshes for the simulations are generated using HEX-
PRESS. Like for most unstructured mesh generators, the grids created by this mesher
may be quite different for geometries that are nearly identical. This could result in nu-
merical noise in the simulations results. Therefore, the simulations of all the candidate
geometries are performed on the same mesh, which is deformed to fit each geometry. The
deformation algorithm is based on [15]. The mesh is divided in layers of cells around the
geometry. Then the displacement from the original to the deformed geometry is com-
puted for the faces on the body and this displacement is propagated through the layers of
cells. Two smoothing mechanisms are applied: (i) the displacements are diffused over the
faces of a single layer, so the mesh deformation becomes more uniform; (ii) a weighting
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technique is applied based on the distance to the body, such that the deformation goes
to zero on the outer boundaries.

3.2 Adaptive grid refinement

After the initial mesh deformation to fit each geometry, the final meshes are obtained
with adaptive grid refinement [16]. The decision on where to refine the mesh is based on
metric tensors [17]. The 3 x 3 criterion tensors C; in each i-th cell are computed from
the flow solution, indicating the target size of the cells. In a hexahedral cell, let the cell
sizes d; ; (7 = 1,2,3) be the vectors between the opposing face centers in the three cell
directions. The goal of the grid refinement is to obtain

where T, is a constant. This is accomplished by refining ¢-th cells in the j-th direction,
until ||C;d; ;|| no longer exceeds the constant 7. The refinement criteria are based on the
second spatial derivatives of the pressure and velocity.

The interest of this procedure for multi-fidelity optimization is that the cell size in
the entire mesh varies proportionally to the threshold 7, [16]. Thus, the precision of the
simulation can be adjusted by varying this parameter, which makes it easy to automate
multi-fidelity simulations. A further advantage is that this technique allows to perform
the mesh deformation on the coarse initial grid, instead of a fine grid where small errors
in the placement of the nodes can lead to inverted cells. A potential disadvantage is that
the refined grids for the different geometries are not the same, which could introduce noise
in the results.

3.3 Dynamic positioning

To maintain a constant lift coefficient the angle of incidence for the hydrofoil is adjusted
dynamically during the simulations. At regular intervals, the difference between the
target and the actual lift is evaluated. Divided by the theoretical lift slope of 2D foils
(AC; = 2wrAc), this gives a change in angle of attack Ac, which is applied over a few
time steps. Then, the flow is allowed to settle and another A« is computed. The mesh is
deformed with an analytical weighting technique, to accommodate the rotation.

4 NUMERICAL RESULTS

The initial training set for the problem is a set of 2/NV + 1 points including the domain
centre and min/max coordinates for each variable. The initial mesh for both high- and
low-fidelity has 2,654 cells, the refinement threshold value T is set equal to 0.1 and 0.4
for high- and low-fidelity, respectively. Therefore, the resulting refined fine and coarse
meshes have 11k and 3.6k cells, respectively (see Fig. 2a and b). Each HF and LF
simulation requires about 13 and 5 minutes of wall-clock time to converge, respectively.
The resulting computational cost ratio is § = 0.3. A budget of 150 simulations is provided
for the adaptive sampling methods, considering both HF and LF simulations. The multi-
fidelity metamodel-based optimization is performed on a normalized domain x € [0, 1].

6
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(a) Fine grid, 11k cells (b) Coarse grid, 3.6k cells

Figure 2: Refined computational grids for hydrodynamic simulations

The metamodel-based optimization results are compared to an optimal reference solution
for the drag coefficient (Cj ;,) identified by an earlier high-fidelity metamodel-based
optimization [18] trained by 150 high-fidelity simulations.

Figure 3 shows the convergences of the maximum prediction uncertainty, the drag
coefficient minimum, and the corresponding design variables. MUAS and MCAS achieve
lower values of the maximum prediction uncertainty than MFEI and ACAS. On the
contrary, only MFEI and ACAS reach a minimum close to the reference. Overall, MFEI
provides the fastest convergence towards the minimum. Figure 4 shows the multi-fidelity
metamodel prediction and the corresponding training set at final iteration of the four
sampling methods. The MUAS and MCAS methods provide a global exploration of the
domain. Differently, MFEI and ACAS methods cluster training points in a small region.
All the sampling methods use a similar number of HF evaluations (see Tab. 1), with
MUAS and MCAS spreading the HF evaluations over the whole domain. Furthermore, it
is worth noting that both MUAS and MCAS request HF training points in the domain
corners. Differently, MFEI and ACAS methods focus HF evaluations only in the minimum
region.

Looking at Fig. 3 it can be noticed how the convergence of the uncertainty prediction of
MUAS and MCAS is noisy. This happen since MUAS and MCAS aim at the minimization
of the maximum uncertainty, therefore clustering the training points in regions where the
uncertainty is high (see Fig. 4). The metamodel uncertainty is affected by a small-
scale noise found in the numerical simulations, in regions with clustered training points.

e
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Figure 3: Hydrofoil optimization problem, convergences of the maximum uncertainty, the function
minimum, and the function minimum coordinates =7 (solid lines) and x5 (dashed lines)
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Figure 4: Training sets and multi-fidelity metamodel prediction of Cy(x) at the final iteration of the
adaptive sampling procedures

(a) MUAS (b) MFEI (c) ACAS (d) MCAS

Figure 5: Hydrofoil optimization, velocity contour for the optimal configuration identified with the
sampling methods

Therefore, MUAS and MCAS add training points in regions where the uncertainty is
due to the numerical noise and not to the objective function shape. The effects of the
numerical noise are evident in Figs. 4a and 4d. MUAS sampling method clusters samples
in the neighborhood of x = {0.1,0.35} (Fig. 4a), whereas MCAS method clusters samples
in the neighborhood of x = {0.6,0.0} (Fig. 4d). Both MUAS and MCAS methods cluster
in such regions mainly LF training points, while MFEI and ACAS methods provide also a
less significant clusterization of HF training points. Figure 5 shows the velocity contours of
the optimal hydrofoil shape identified by the adaptive sampling methods. The differences
of the hydrofoil shapes are not evident, although the velocity contours are considerably
different.

The results of the adaptive sampling procedure are summarized in Tab.1, showing
how MFEI methods results to be the most effective adaptive sampling technique, for the
present problem.

5 CONCLUSIONS AND FUTURE WORK

Four adaptive sampling methods for multi-fidelity metamodeling are presented and
applied to the CFD-shape optimization of a NACA hydrofoil. The multi-fidelity approxi-
mation is obtained as the sum of a low-fidelity-trained metamodel and the metamodel of
the difference (error) between high- and low-fidelity evaluations. The metamodel is based
on SRBF, which provides the prediction and the associated uncertainty. The prediction
uncertainty of both the low-fidelity and the error metamodel is used for the adaptive
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Table 1: Summary of the performances of the adaptive sampling methods

’,C’ |5’ Predicted Cd,min 1 T2 HF Cd,min

MUAS 136 14 7.1759E-3 0.3084 0.0000 7.2582E-3
MFEI 135 15 7.1545E-3 0.3709 0.0000 7.2371E-3
ACAS 138 12 7.1754E-3 0.3620 0.0001 7.2403E-3
MCAS 137 11 7.2816E-3 0.3291 0.0000 7.2606E-3

Reference 0.3554 0.0003 7.2340E-3

refinement of the low- and high-fidelity training sets. The ratio of the computational cost
of high- and low-fidelity evaluations affect the choice of the fidelity to sample.

The refinement of the training set is performed following: (i) the minimization of
the maximum uncertainty of the multi-fidelity metamodel prediction (MUAS), (ii) the
maximization of the expected improvement (computed with a different reference to better
comply with the multi-fidelity methodology, MFEI), (iii) minimization of an aggregated
merit factor of prediction uncertainty and predicted objective function (ACAS), and (iv)
multi-objective optimization maximizing the prediction uncertainty and minimizing the
predicted objective function (MCAS). The multi-fidelity metamodel performance has been
assessed in terms of convergence of the maximum uncertainty and convergence of the
objective function minimum.

The CFD-shape optimization problem of the NACA hydrofoil is resulted to be a chal-
lenging problem for the multi-fidelity metamodel. The existence of numerical noise affects
the SRBF interpolation, resulting in large uncertainty of the multi-fidelity prediction in
noisy regions of the domain. Therefore, the sampling methods that directly take into
account the multi-fidelity prediction uncertainty have been “trapped” in adding training
points in such region.

Future work includes comparing the current multi-fidelity results with a metamodel
trained only with high-fidelity evaluations for all the sampling methods. Furthermore, the
effects of U; on the MCAS method in presence of numerical noise will be assessed, as well

as the use of approximation methods (e.g. least square fit) as opposed to interpolation.
Finally, the CFD simulation procedures will be optimized to reduce the noise at its source.
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