RU-Net: A refining segmentation network for 2D echocardiography - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

RU-Net: A refining segmentation network for 2D echocardiography

Pierre-Marc Jodoin
  • Fonction : Auteur
  • PersonId : 884870

Résumé

In this work, we present a novel attention mechanism to refine the segmentation of the endocardium and epicardium in 2D echocardiography. A combination of two U-Nets is used to derive a region of interest in the image before the segmentation. By relying on parameterised sigmoids to perform thresholding operations, the full pipeline is trainable end-to-end. The Refining U-Net (RU-Net) architecture is evaluated on the CAMUS dataset, comprising 2000 annotated images from the apical 2 and 4 chamber views of 500 patients. Although geometrical scores are only marginally improved, the reduction in outlier predictions (from 20% to 16%) supports the interest of such approach.
Fichier principal
Vignette du fichier
articleIUS2019 (2).pdf (243.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02570017 , version 1 (11-05-2020)

Identifiants

Citer

Sarah Leclerc, Erik Smistad, Thomas Grenier, Carole Lartizien, Andreas Ostvik, et al.. RU-Net: A refining segmentation network for 2D echocardiography. 2019 IEEE International Ultrasonics Symposium (IUS), Oct 2019, Glasgow, France. pp.1160-1163, ⟨10.1109/ULTSYM.2019.8926158⟩. ⟨hal-02570017⟩
99 Consultations
341 Téléchargements

Altmetric

Partager

More