The first moment of primes in arithmetic progressions: Beyond the Siegel-Walfisz range - Archive ouverte HAL
Article Dans Une Revue Transactions of the London Mathematical Society Année : 2021

The first moment of primes in arithmetic progressions: Beyond the Siegel-Walfisz range

Sary Drappeau
Daniel Fiorilli

Résumé

We investigate the first moment of primes in progressions $$ \sum_{\substack{q\leq x/N \\ (q,a)=1}} \Big(\psi(x; q, a) - \frac x{\varphi(q)}\Big) $$ as $x, N \to \infty$. We show unconditionally that, when $a=1$, there is a significant bias towards negative values, uniformly for $N\leq {\rm e}^{c\sqrt{\log x}}$. The proof combines recent results of the authors on the first moment and on the error term in the dispersion method. More generally, for $a \in \mathbb Z\setminus\{0\}$ we prove estimates that take into account the potential existence (or inexistence) of Landau-Siegel zeros.
Fichier principal
Vignette du fichier
moment1-sw.pdf (399.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02567736 , version 1 (10-11-2020)

Identifiants

Citer

Sary Drappeau, Daniel Fiorilli. The first moment of primes in arithmetic progressions: Beyond the Siegel-Walfisz range. Transactions of the London Mathematical Society, 2021, 8 (1), pp.174-185. ⟨10.1112/tlm3.12030⟩. ⟨hal-02567736⟩
58 Consultations
92 Téléchargements

Altmetric

Partager

More